ANALYSIS QUALIFYING EXAM

JANUARY 19, 2012

REAL ANALYSIS

Answer all 4 questions. In your proofs, you may use any major theorem, except the fact you are trying to prove (or a variant of it). State clearly what theorems you use. Good luck.

- Question 1 a) Let f 2 $L^1(m)$ and $F(x) = {R_x \atop 1}$ f(t)dt. Then F is continuous. b) Show for a > 0 ${R_1 \atop 1}$ $e^{-x^2} \cos(ax) dx = {P_1 \atop e}^{-a^2=4}$.

Question 2

State and prove the Hahn-Decomposition Theorem for signed measures.

Question 3

Let 1 p < 1 and m be Lebesgue measure. LeM be a closed subspace $df^p([0; 1]; m)$ such that M is contained in the space of continuous function $\mathfrak{C}([0;1])$ (i.e. every element of M has a continuous function in its equivalence class, which is necessarily unique). Show that there exists $a_p > 0$ such that for all f 2 M

where $jj:jj_u$ is the sup norm on C([0;1]) $L^p([0;1];m)$.

Question 4

- a) Prove the uniqueness of a (left-invariant) Haar measure on a locally compact hausdor topological group.
- b) Prove that Haar measure for a compact group or abelian group is both left and right invariant.