ANALYSIS QUALIFYING EXAM JUNE. 2014), playka meansoure space and Answer all 4 questions. In your proofs, y f: X R measurable. Show that $$\int_{X} |f(x)|^{p} d\mu(x) = \int_{0}^{\infty} pt^{p-1} (t) dt,$$ where $(t) = \mu\{x/t < |f(x)|\}.$ ## Exercise 2. (30 points.) - (1) Prove that not every subset of [0, 1] is Lebesgue measurable - (2) Let $f_n : [0, 1]$ R be a sequence of Lebesgue measurable functions. Prove that the set $E = \{x/\lim_n f_n(x) \text{ exists}\}\$ is Lebesgue measurable ## Exercise 3. (30 points.) Let X, Y be Banach spaces. If T: X = Y is a linear map such that f = T = X for all f = Y then T is bounded. ## Exercise 4. (30 points.) Let (X, \mathcal{M}, μ) be a finite measure space. For each of the following claims prove or give a counter example: - $_{n}$) of real valued measurable functions on X converges μ a.e., then (f_{n}) converges in measure. - (2) If a sequence (f_n) of real valued measurable functions on X converges in measure., then (f_n) converges μ a.e. - (3) If a sequence (f_n) of real valued measurable functions on X is Cauchy in $L^1(\mu)$, then (f_n) converges in measure.