Algebra Qualifying Exam Spring 2015 3 hours

- 1. (a) Show that $GL_2(\mathbb{F}_5)$ has a unique conjugacy class of elements of order three.
- (b) Classify, up to isomorphism, all groups of order $3 \cdot 5^2$, and give a presentation for each group. Hint: Aut($\mathbb{Z}/5\mathbb{Z} \times \mathbb{Z}5$).

2. Suppose F is a field and $a \in F$. For each of the following groups G, either find an example of F and a for which $x^{4} - a = F[x]$ has Galois group G, or show that no such F and *a* exist.

$$G = D_8$$
, $G = S_4$, $G = \mathbb{Z}/4\mathbb{Z}$.

3. Suppose p is a prime. Show that the Galois group of $x^5 - 1 = \mathbb{F}_p[x]$ depends only on p (mod 5), and compute it for each congruence class $p \pmod{5}$.

4. Suppose R is a Noetherian local ring with maximal ideal m. If a is an ideal such that the only prime ideal containing a is m, show that m^k a for k = 0.

5. Suppose R is a UFD, and let R_p be the localization of R at a prime p = () generated

 $\dots, x_n]/I$ is finite dimensional. Hint: set $J = \overline{I}$ and prove that each J^k/J^{k+1} a finite dimensional \mathbb{C} -vector space.

8. Let k be an algebraically closed field. Let V be the algebraic subset of \mathbb{A}^2 over k cut out by the equation $y^2 = x^3 + x^2$.

- (a) Show that the normalization of k[V] is the polynomial ring k[t] where t = y/x.
- (b) Compute the fibers of the map $: \mathbb{A}^1 \to V$ that corresponds to the inclusion : k[V]k[t].