Topology Qual, Algebraic Topology: Summer 2012

(1) Let $_g$ denote the closed, orientable, surface of genus Prove that if $_g$ is a covering space of $_h$, then there is a $d 2Z^+$ satisfying

$$g = d(h \quad 1) + 1.$$

- (2) Let X be a closed (i.e., compact & boundaryless), orientable \mathbb{A} dimensional manifold. Prove that if $H_{k-1}(X; Z)$ is torsion-free, then so is $H_k(X; Z)$.
- (3) Let $T^2 = R^2/Z^2$ be the 2{torus, concretely identi ed as the quotient space of the Euclidean plane by the standard integer lattice. Then any 2 2 integer matrix A induces a map

$$\phi : (R/Z)^2 ! (R/Z)^2$$

by left (matrix) multiplication.

(a) Show that (with respect to a suitable basis) the induced contravariant map

$$\phi^*: H^1(T^2; Z) \qquad H^1(T^2; Z)$$

on the cellular cohomology is left multiplication by the transpose of A.

(b) Since T^2 is a closed,Z{oriented manifold, it has a fundamental class, $[T^2] 2 H_2(T^2; Z)$. Prove that

$$\phi_*[T^2] = \det(A) [T^2].$$

(Hint: Use part (a) and the naturality of the cup product under induced maps on homology/cohomology.)

(4) The closed, orientable surface $_g$ of genusg, embedded in \mathbb{R}^3 in the standard way, bounds a compact region R (often called a genusg solid handlebod).

Two copies of R, glued together by the identity map between their boundary surfaces, form a closed 3{manifoldX. Compute $H_*(X; Z)$.

GT Qual 2012 (Spring) Part II Show All Relevant Work!

1) Consider stereographic projection of the unit circle S^1 in \mathbb{R}^2 to \mathbb{R} from the North Pole () and from the South Pole (~).

a) Show that $\sim -1(x) = 1 = x$

b) Consider the smooth vector eld $\frac{d}{dx}$ on **R**. Using , this induces a smooth vector eld on the circle minus the North Pole. Can it be extended to a smooth vector eld on all of S^1 ?

2a) A smooth map F : M ! N is a submersion if...

b) Let *M* be a compact, smooth 3-manifold. Prove that there is no submersion $F : M : \mathbb{R}^3$.

3) Consider *D* the open unit disk in \mathbf{R}^2 with Riemannian metric

$$g = (\frac{2}{1+x^2+y^2})^2 dx \quad dx + (\frac{2}{1+x^2+y^2})^2 dy \quad dy$$

a) Write down an (oriented) orthonormal frame $(E_1; E_2)$ for D with respect to this metric.

b) Write down the associated dual coframe $\begin{pmatrix} 1 & 2 \\ 2 & 2 \end{pmatrix}$.

c) Compute $\stackrel{1}{\stackrel{\wedge}{p}} \stackrel{2}{\xrightarrow{}}$. Is this the Riemannian volume form (that is, does it agree with the volume formula $\stackrel{p}{\stackrel{\vee}{det(g_{ij})}} dx \wedge dy$)?

d) Compute the volume (area?) of *D* with respect to this metric.

e) What have you computed?

4) Suppose that f_0 and f_1 are smoothly homotopic maps from X to Y and that X is a