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INTRODUCTION

I. The growing role of robots in human society

Humanity has come to rely on robots in many aspects of society. In the industrial sector, 

we have intricate, precise, robotic installations designed to either manufacture or inspect various 

goods, such as automobiles. In the commercial sector, floor-crawling rovers vacuum floors, freely 

available to anyone with the inclination and disposable income to do so. On the surface of Mars, 

the twin observational rovers Spirit and Opportunity scour the dusty red landscape, transferring 



job too costly, dangerous, and time-consuming for humans to perform is one of the foremost 

applications of robotic technology. (Mars Exploration Rover project)

Robot-assisted or completely unmanned surgery has become a way for doctors to reliably 

perform different operations with a degree of precision impossible to duplicate by human hands 

alone. Robots can delicately perform minimally invasive tasks that human hands cannot, simply 

because of the smaller size and locations of interaction that can be handled by machine. Robotic 

http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://www.irobot.com/sp.cfm?pageid=203


their sensory data with each other. (K.A.Hawick, H.A.James, J.E.Story and R.G.Shepherd, 2007)

Applications for swarm robotics present themselves at many levels of technology. Where 

primitive swarm members are appropriate for doing a basic physical task - such as mining, 

surveying, or foraging – swarms can be a preferable alternative to using human labor due to 

health risks or general tedium. Where miniaturization is a factor, swarm robotics can be applied 

to nanotechnology or micromachinery to handle distributed sensory tasks in the human body. By 

decentralizing intelligence we allow for more primitive swarm members, instead relying on 

parallel computation to perform tasks using macroscopic control over the entire swarm. As a 

whole, however, swarm robotics has yet to emerge outside of the research sector, and there are no 

current commercial, military, or recreational implementations of it. (



swarm member (or a subset of the swarm) 'figures out' how to accomplish something, the entire 

swarm is able to capitalize upon this knowledge. This combination of simulating social insect 

behavior with artificial evolution allows SYMBION swarms to perform tasks such as linking up 



they are required to encounter, robots tend to be rather costly to engineer in terms of time and, 

subsequently, currency. As a result of these costs, it often becomes difficult to justify subjecting 

these machines to harsh environments that may damage them. While addressable, these concerns 

must  weigh  heavily  in  the  mind  of  any  engineer  before  making  any  attempt  to  approach  a 

problem from a robotic point of view.

Power  consumption  is  one  of  the  largest  barriers  to  effectively  applying  robotic 

technology to humanity's problems. Batteries simply do not last long enough to power a robot's 

motors and sensors for many tasks, especially those which last a long time such as exploration. A 

common solution is to use solar panels, such as on the Mars rovers Spirit and Opportunity, but 

solar  panels  don't  generate  enough energy to keep robots  functioning constantly,  and certain 

environmental factors can render them useless altogether. Robots need access either to a constant 

energy source or intermittent contact with an energy source in order to maintain function as 



produced (after great care is taken to select the right array of motors and sensors to accomplish 



In terms of power consumption,  robotic  swarms tend to have many advantages  when 

compared to larger, more complicated robots. Their smaller, more primitive motors, sensors, and 

CPUs simply use less energy, although they are also typically equipped with smaller batteries. 

However, since the swarm is composed of many smaller units, allowing one to rest and recharge 

via solar panels or some sort of energy source allows the swarm to continue its work relatively 

unimpeded. The collective capacity to do work before recharging in a swarm will be greater than 

that done by a single robot, and work will always still be done even as individual members have 

entered an inactive mode in order to recharge their batteries. (Schmickl and Crailsheim, 2006)

Imprecise movement is still a problem for robotic swarms, but swarms are better equipped 

to meliorate  the impact of the issue than singular robots.  By being able to pinpoint or even 

estimate each robot's position relative to its brothers, we can construct a much more reliable 

model of a given robotic operation than relying on one robot's impressions of its surroundings. 

Multiple  cameras  can be used to  create  a  stereoptic  analysis  of  a  system, and the collective 

estimations  therein  can  be  averaged  to  provide  a  realistic  if  imperfect  snapshot  of  the 

environment the swarm is deployed to. This way, we can have a proficient system of reckoning 

without having to rely on a costly absolute system such as GPS or radar. (Moeslinger, Schmickl 

and Crailsheim, 2009)

The emphasis on using many smaller, less sophisticated robots to perform a task in swarm 

robotics is often a more cost-effective solution than having one or two intricate machines. Swarm 

members are typically not designed with durability or multi-tasking in mind, and can therefore be 

equipped with inexpensive sensors, motors, and CPUs. Some sensors can become very expensive 

as higher qualities are necessary, such as cameras and infrared detectors, but we need not equip 

every member of the swarm similarly. Indeed, using the sensor network of the entire swarm, it is 



“hive-mind” of the swarm. (Schmickl and Crailsheim, 2006)

Because of the low cost of individual machines, members of a swarm can be viewed as 

expendable,  allowing them to perform tasks that one might think twice about using a single 

expensive  robot  for.  While  we  might  be  hesitant  to  send  a  multi-million  dollar  automated 

submersible to examine undersea volcanic vents, a member of a swarm can perform this task ably 

with  a  cheap camera  and whatever  relevant  sensors  while  transmitting  any data  back  to  his 

brothers before getting destroyed. This allows us to completely automate certain tasks that are 

normally left to humans themselves – or at least humans remotely controlling robots – without 

worry.

Aside  from  providing  methods  to  overcome  the  main  issues  with  mobile  robotic 

technology, swarm robotics gives us ways to perform tasks that would simply be infeasible for 

normal robots. Robots tend to move sluggishly, and where time is an issue their employment is 

often unattractive. One or two robots, no matter how sophisticated, are not an optimal way to 

search  for  survivors  in  collapsed  mine,  to  sniff  out  explosive  devices  in  a  sprawling  urban 



number of variables that could cause something to go horribly wrong increase greatly, and must 

be accounted for to have any reasonable application of swarm technology. Using more primitive 

sensors and motors can also degrade the quality of the work done by the swarm. They are not 

suitable  for  undertaking  tasks  that  require  very  specific  observations  or  sensory  input,  like 

exhaustively exploring an entire area and surveying it to produce an accurate map.

With a single robot, one must only account for one set of sensors, one CPU, and one body 

of code. This is sadly not so in a swarm. By having multiple robots equipped with a variety of 

sensors on a robot-by-robot basis, there are several different protocols that must be accounted for 



Because the physical hardware swarm robots are equipped with tend not to be terribly 

sophisticated,  more  problems  arise.  The  lack  of  high-quality  sensors  and  motors  can  make 

swarms unsuitable for tasks that require detailed sensory feedback or delicate movement. For 

example,  equipping every robot  in  the swarm with a  high resolution,  telescopic lens  camera 

defeats  the purpose of using a swarm as a cost-effective alternative to a single sophisticated 

robot. They are better suited to tasks that merely require imprecise calculation: searching for the 

general location of a resource, or estimating the depth of a cave, for example. 



METHODOLOGY

1. The NXT Brick from LEGO Mindstorms

All swarm implementation was done in Java using ten Lego NXT “bricks” equipped with 

leJOS  firmware.  These  relatively  inexpensive  computers  come  in  packages  with  modular, 

interchangeable sensors and motors that made it easy to test different configurations. Moreover, a 

third-party camera designed for the NXT was also used. Ten skeletal robots were assembled, and 

several different network models were tested.  

The  NXT  Brick  itself  possesses  an  ARM7  microprocessor  clocked  at  the  relatively 

unimpressive speed of 46 megahertz and a meager cache of 32 kilobytes. While this is more than 

enough computing power to handle basic motor, sensor, and communication routines, it severely 

limits any sort of complicated data processing that can be done by the swarm without relying on 

an external source. Luckily, the distributed nature of the swarm helps alleviate this drawback, as 

computational tasks can be relegated to inactive members.

NXT Bricks can currently only interface with one type of motor, which is included in the 

Mindstorms kit. It's an electric servo motor with a high degree of motion accuracy thanks to its 

on-board tachometers: accurate to within one degree of specificity. Any sort of locomotive task – 

either moving the robot itself or manipulating an object – was undertaken using one or more of 

these motors.

The Mindstorms kit comes with a variety of sensors, and many third-party sensors have 

been developed for the NXT brick. Included are:

! A touch sensor that simply gives binary feedback for touch or release.

! A light sensor that gives quantitative feedback of light intensity overall,  or the 



light intensity of certain colors.

! A sound sensor that gives quantitative levels of sound in either dB or dBA.

! An ultrasonic  sensor  that  approximates  the  distance  of  an  external  object  by 

emitting an infrared “ping”.

! An accelerometer that measures the rotational position of the robot.

! A compass sensor to tell the heading of the robot with regards to magnetic north.

! An RFID sensor that gives feedback to match a given RFID frequency.

Moreover,  cameras have been developed via  third parities to  give the robot a way of 

visually interfacing with its environment. For this thesis, the NXTCam developed by <> was used 

for  this  purpose.  The  proprietary  sensors  used  were  limited  to  the  ones  included  in  the 

Mindstorms  kit:  the  touch,  light,  sound,  and  ultrasonic  sensors.  This  is  because  of  the  cost 

associated with extra sensors whose function was either limited for the scope of this thesis or 

could readily be duplicated with the other sensors. 

The NXT brick has seven ports designed for 4-conductor cables to connect to: three for 

motors labeled A,B, and C, and four for sensors with numeric labels. To keep the solution of 

cost-effectiveness in mind, most of the bricks were equipped with only 2 motors and 2 or less 

sensors. Many members of the swarm were not equipped with sensors at  all.  This kept each 

member's functionality at bare minimal levels in order to demonstrate the power of the swarm as 

a whole.  

The NXT bricks have important limitations that accentuate the problem of using more 

primitive hardware for a swarm as compared to a single robot. The most drastic limitation by far 

is  the  connection  limit  of  the  NXT's  on-board  Bluecore  chip  that  handles  Bluetooth 

communication. A given NXT brick may only maintain three connections at once, whether they 

are to other NXT bricks or other Bluetooth devices such as a GPS receiver or a laptop. As such, 



swarm  structures  were  inherently  limited  to  hierarchical  configurations  rather  than  fully-

connected graphs that a swarm would ideally possess. This could be worked around by deleting 

and  reinstating  connections  at  runtime,  but  the  significant  increase  in  running  time  wasn't 

justified when any data could be relayed through the hierarchy more quickly with the proper 

network implementation.

The other limitation was the memory capacity of the NXT brick. Each brick only has 

256K of flash memory, more than half  of which was taken up by the leJOS firmware. This 

limited not only the amount of Java classes that could be used in implementing the swarm's 

behavior, but also the amount of persistent image data that could be relayed back to an external 

source.   

II. The leJOS custom firmware



used up  by the  firmware itself  –  steps  must  be  taken to  conserve the  remaining  amount  of 

memory carefully. As such, it often is a smarter solution to use predefined arrays instead of 



these at runtime thanks to the leJOS's lack of command line interface. The top member of the 

swarm hierarchy maintains a list of all positions of members of the swarm, and the swarm is 

initialized via the masters' requests for every member's position. After this, the swarm begins to 

act autonomously, although behavior varies by swarm configuration.

The master maintains three separate connections to the mid-level members of the swarm, 



Each CommandCenter has an object called MovementCenter that track's the robots facing 

and position and handles each robot's movement subroutines. It can be calibrated for any given 

surface, and uses a Cartesian grid system relative to the starting position of the master robot in 

the swarm. It can be told to go to a point, or to simply face a point. The amount of rotation and 

movement are handled by using simple Cartesian distance formulas to calculate the distance, and 



could also be used to simply document an object or an environment from multiple perspectives 

for the sake of completeness or redundancy of information.

V. Swarm configuration Parker

The second sensor configuration for the swarm is called “Parker”. It works essentially as 

an inversion of the Triforce configuration. The root node is equipped with camera instead of the 

second command level, and the second command level function as investigators using the light 

and ultrasonic sensors. As in Triforce, the leaf robots are used to process data and perform simple 

mundane tasks, as they are sensorless. Most importantly, however, they are used to relay objective 

data  to  outside  sources,  alerting  them  to  the  position  and  condition  of  a  given  objective. 

Compared  to  Triforce,  Parker's  strength  lies  in  the  ability  to  cover  ground to  find  potential 

objectives  to document as quickly as  possible.  It  is  akin to a  search-and-rescue or resource-

locating swarm as opposed to the observational nature of the Triforce configuration.

VI. Swarm configuration Gaga

Gaga, the last swarm configuration, differs from Triforce and Parker in that it is designed 

to accomplish work by physically interacting with its environment. Here, the leaf robots are used 



swarm configuration is best-suited to a wide-scale environmental task such as taking soil samples 

or agricultural foraging.

VII. The tasks

One task was chosen for each swarm configuration. The time taken to complete each task 

was recorded for both the corresponding swarm and a single bot equipped to do each task on its 

own. All of the “objectives” used in these tasks are simply red plastic cups placed at random 

locations in the environment that the swarm (or single robot) explores. Three timed trials for each 

swarm were taken. 

The task for Triforce involves documenting an objective from several perspectives. For the 

Triforce  swarm,  the  root  node  is  used  to  locate  these  objectives  while  the  subcommanders 

simultaneously document it using cameras. For the analogous  single robot, the robot must do all 



The task for Gaga is similar to Parker's, but instead physical work must be performed on 

the objectives. To simulate these actions, any robots defined as workers spin in place for 30 

seconds at the objective to demonstrate a physical task, such as drilling or gathering a sample. 

The singe robot must wait  until  this  work is  completed before it  can continue searching for 

another objective. In all other aspects, at the root commander and subcommander level, the task 

is the same as that undertaken by the Parker swarm.





IV. Conclusions

The general trend with the NXT swarms was that they were consistently able to perform 

their given tasks significantly faster than single robots. However, this only applies when the tasks 

themselves  were  completed.  Due  to  problems  with  pathing,  reckoning,  synchronization  and 

communication, colliding swarm members inhibited the swarm's ability to actually finish the task 

at hand.

Parker,  however,  was  unaffected  by  this  as  its  immobile  leaf  robots  and  inherently 

divergent subcommander movement patterns prevented any collisions. Triforce and Gaga, due to 

their more active leaf robots, were more likely to experience a fatal crash that rendered their task 

not completable. 

This  problem  could  have  been  alleviated  by  more  efficient  pathing  algorithms,  or 

allowing the swarm to give a more thorough estimation of its current density at given locations as 

environmental features to avoid.
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public void initialize() throws IOException{ 
//botLocation.add(botID, new Point(thisBot.getX(),thisBot.getY())); 

//connect to parent 
addConnection(Bluetooth.waitForConnection()); 
//connect to children 
for (int i = 1; i<3;i++){ 

RemoteDevice rd = Bluetooth.getKnownDevice("Gadsby" +(i+botID)); 
addConnection(Bluetooth.connect(rd)); 

} 
//good to go 
ready = true; 

} 
public boolean isReady(){ 

return ready; 
} 

}





this.waitForDocumentation(); 
} 

} 

private void requestPositionUpdates() throws IOException{ 
for (int i = 0;i<3;i++){ 

try{ 
DataInputStream dis = in.get(i); 
DataOutputStream dos = out.get(i); 

dos.writeInt(CommandCenter.INITIALIZE_LOCATIONS); 
dos.flush(); 
LCD.drawInt(i,i,i); 
int response = dis.readInt(); 
LCD.drawInt(response,4,4); 
if (response != CommandCenter.BUSY && response != 

CommandCenter.NO_CHANGE){ 
//get botID and point, add it to locations. 
botLocation.add(dis.readInt(),new 

Point(dis.readInt(),dis.readInt())); 



} 
return new Point(x/botLocation.size(),y/botLocation.size()); 

} 

private boolean locationOccupied(int x, int y){ 
for (Point p : botLocation){ 

if (x == p.x || y == p.y) 
return true; 

} 
return false; 

} 

private void waitForDocumentation()throws IOException{ 
while (true){ 

for (int i = 0; i<3;i++){ 
int c = in.get(i).readInt(); 
if (c == CommandCenter.DOCUMENTED){ 

LCD.drawString("Bot " + i + " finished",i,i); 
} 

} 
Button.waitForPress(); 

} 
} 

}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class TriforceSubcommand extends CommandCenter{ 
private NXTCam cam; 

private boolean selfreported; 
private boolean child1reported; 
private boolean child2reported; 

public TriforceSubcommand(int id, MovementCenter bot){ 
super(id,bot); 
cam = new NXTCam(SensorPort.S1); 
ready =false; 
selfreported = false; 
child1reported = false; 
child2reported = false; 

} 

public void executeCommand() throws IOException,InterruptedException{ 
while (true){ 

try{ 
int command = in.get(0).readInt(); 

if (command == CommandCenter.INITIALIZE_LOCATIONS) 
initializeLocations(); 

if (command == CommandCenter.INVESTIGATE) 
investigate(); 

}catch (IOException e){ 
} 

} 
} 

private void initializeLocations() throws IOException{ 
LCD.drawInt(0,0,0); 
if (!selfreported){ 

out.get(0).writeInt(0); 
out.get(0).writeInt(botID); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 
selfreported=true; 



} 
else if (!child1reported){ 

out.get(0).writeInt(0); 
out.get(0).writeInt(botID); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 
child2reported=true; 

} 
else if (!child2reported){ 



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class TriforceLeaf extends CommandCenter{ 
public TriforceLeaf(int id, MovementCenter bot){ 

super(id,bot);
} 
public void executeCommand() throws IOException,InterruptedException{ 

while (true){ 
try{ 

int command = in.get(0).readInt(); 
if (command == CommandCenter.INITIALIZE_LOCATIONS) 

initializeLocations(); 
if (command == CommandCenter.INVESTIGATE) 

investigate(); 
}catch (IOException e){ 
} 

} 
} 

public void initialize() throws IOException{ 
addConnection(Bluetooth.waitForConnection()); 
ready = true; 

} 

private void initializeLocations() throws IOException{ 
out.get(0).writeInt(0); 
out.get(0).writeInt(botID); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 

} 

private void investigate() throws IOException,InterruptedException{ 



while (true){ 
try{ 

int x = in.get(0).readInt(); 
int y = in.get(0).readInt(); 

//go to location 
thisBot.goToPoint(x,y); 
out.get(0).writeInt(CommandCenter.DOCUMENTED); 
out.get(0).flush(); 
break; 

}catch(IOException e){ 
//Thread.sleep(500); 

} 
} 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import java.util.*; 

public class MovementCenter{ 
public static final int LATERAL_CONSTANT = 1500; 
public static final double RADIAL_CONSTANT = .13; 

private int posX; 
private int posY; 
private float dirX; 
private float dirY; 

public static void main(String[] args) throws InterruptedException{ 
MovementCenter thisBot = new MovementCenter(0,0,0f,1.0f); 
Thread.sleep(3000); //3 second delay 
thisBot.moveToFace(1,1); 
thisBot.moveToFace(-1,-1); 
thisBot.approachPoint(4,3); 
thisBot.approachPoint(0,0); 

} 

public MovementCenter(int px, int py, float dx, float dy){ 
Motor.A.setPower(50); 
Motor.C.setPower(50); 
this.posX = px; 
this.posY = py; 
this.dirX = dx; 
this.dirY = dy; 

} 

public void move(float munits) throws InterruptedException{ 
//positive is forward. Motors A and C are wheels. 
if (munits>0){ 

Motor.A.forward(); 
Motor.C.forward(); 

} 
if (munits<0){ 

Motor.A.backward(); 
Motor.C.backward(); 
munits = munits * -1; 

} 

Thread.sleep(Math.round(munits*LATERAL_CONSTANT)); 
Motor.A.stop(); 



Motor.C.stop(); 
//forced wait to keep motors from bucking with constant movement 
Thread.sleep(200); 

} 

public void rotate(int degrees) throws InterruptedException{ 
//positive is counterclockwise 
if (degrees>0){ 

Motor.A.forward(); 
Motor.C.backward(); 

} 
if (degrees<0){ 

Motor.A.backward(); 
Motor.C.forward(); 
degrees = degrees * -1; 

} 
Thread.sleep((long)Math.round(50*degrees*RADIAL_CONSTANT)); 
Motor.A.stop(); 
Motor.C.stop(); 
Thread.sleep(200); 

} 

public void goToPoint(int x, int y) throws InterruptedException{ 

float v2x = x - posX; 
float v2y = y - posY; 
int angle = (int)Math.round(Math.toDegrees(Math.atan2(v2y,v2x) - 

Math.atan2(dirY,dirX))); 
this.rotate(angle); 
float distance = (float)Math.sqrt((x-posX)*(x-posX)+(y-posY)*(y-posY)); 
this.move(distance); 
posX = x; 
posY= y; 
//make new direction vector via projection of onto destination 
float length =(float)Math.sqrt(v2x*v2x+v2y*v2y); 
dirX= v2x/length; 
dirY= v2y/length; 

} 

public void moveToFace(int x, int y) throws InterruptedException{ 
//create vector, calculate angle 
float v2x = x - posX; 
float v2y = y - posY; 
int angle = (int)Math.round(Math.toDegrees(Math.atan2(v2y,v2x) - 

Math.atan2(dirY,dirX))); 

this.rotate(angle); 



//make new direction vector via projection of onto destination 
float length =(float)Math.sqrt(v2x*v2x+v2y*v2y); 
dirX= v2x/length; 
dirY= v2y/length; 

} 

public int getX(){ 
return posX; 

} 
public int getY(){ 

return posY; 
} 

public void approachPoint(int x, int y)throws InterruptedException{//get within 3 units of 
target 

int dx = this.posX - x; 
int dy = this.posY - y; 
int targetX=x, targetY=y; 
if (dx > 0) 

targetX = x+1; 
if (dx < 0) 

targetX = x-1; 
if (dy > 0) 

targetY = y+1; 
if (dy < 0) 

targetY = y-1; 

this.goToPoint(targetX,targetY); 



dirX= v2x/length; 
dirY= v2y/length; 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class ParkerRootCommand extends CommandCenter{ 

private List<Point> botLocation; 
private List<Rectangle> rects; 
private NXTCam camera;

public ParkerRootCommand(int id, MovementCenter bot){ 
camera = new NXTCam(SensorPort.S1); 
botLocation = new ArrayList<Point>(); 
rects = new ArrayList<Rectangle>(); 
super(id,bot);

} 

public void executeCommand() throws IOException,InterruptedException{ 
while (true){ 

try{ 
for (int i = 0; i<3;i++){ //alternate between channels

int command = in.get(i).readInt(); 
if (command == CommandCenter.INVESTIGATE) 

investigate(); 
else 

reportResults(); 
} 

}catch (IOException e){ 
} 

} 
} 
private void reportResults() throws IOException{ 

//write results back to computer 
con.get(0).close(); //because of three-connection limit 
BTConnection c = Bluetooth.waitForConnection(); 
DataOutputStream dos = c.openDataOutputStream(); 
for (Rectangle rect:rects){ 

dos.writeInt(rect.x); 
dos.writeInt(rect.y); 
dos.writeInt(rect.width); 
dos.writeInt(rect.height); 
dos.flush(); 



} 
} 

private void requestPositionUpdates() throws IOException{ 
for (int i = 0;i<3;i++){ 

try{ 
DataInputStream dis = in.get(i); 
DataOutputStream dos = out.get(i); 

dos.writeInt(CommandCenter.INITIALIZE_LOCATIONS); 
dos.flush(); 
LCD.drawInt(i,i,i); 
int response = dis.readInt(); 
LCD.drawInt(response,4,4); 





 
private void requestInvestigation()throws IOException, InterruptedException{ 

out.get(0).writeInt(CommandCenter.INVESTIGATE); 



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class ParkerLeaf extends CommandCenter{ 

public ParkerLeaf(int id, MovementCenter bot){ 
selfreported = false; 
super(id,bot);

} 

public void executeCommand() throws IOException,InterruptedException{ 
while (true){ 

try{ 
int command = in.get(0).readInt(); 

if (command == CommandCenter.INITIALIZE_LOCATIONS) 
initializeLocations(); 

if (command == CommandCenter.REPORT) 
report(); 

}catch (IOException e){ 
} 

} 
} 

public void initialize() throws IOException{ 
//connect to parent 
addConnection(Bluetooth.waitForConnection()); 
ready = true; 

} 

private void initializeLocations() throws IOException{ 
out.get(0).writeInt(0); 
out.get(0).writeInt(botID); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 

} 

private void report() throws IOException,InterruptedException{ 
while (true){ 

try{ 
int x = in.get(0).readInt(); 



int y = in.get(0).readInt(); 

addConnection(Bluetooth.waitForConnection());
in.get(1).writeInt(x);
in.get(1).writeInt(y);

}catch(IOException e){ 
//Thread.sleep(500); 

} 
} 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class GagaRootCommand extends CommandCenter{ 

private List<Point> botLocation; 
private List<Rectangle> rects; 
private NXTCam camera;

public GagaRootCommand(int id, MovementCenter bot){ 
camera = new NXTCam(SensorPort.S1); 
botLocation = new ArrayList<Point>(); 
rects = new ArrayList<Rectangle>(); 
super(id,bot);

} 

public void executeCommand() throws IOException,InterruptedException{ 
while (true){ 

try{ 



} 

private void requestPositionUpdates() throws IOException{ 
for (int i = 0;i<3;i++){ 

try{ 
DataInputStream dis = in.get(i); 
DataOutputStream dos = out.get(i); 

dos.writeInt(CommandCenter.INITIALIZE_LOCATIONS); 
dos.flush(); 
LCD.drawInt(i,i,i); 
int response = dis.readInt(); 
LCD.drawInt(response,4,4); 
if (response != CommandCenter.BUSY && response != 

CommandCenter.NO_CHANGE){ 
//get botID and point, add it to locations. 
botLocation.add(dis.readInt(),new 

Point(dis.readInt(),dis.readInt())); 
dos.writeInt(CommandCenter.CONFIRMED); 

} 
}catch(IOException e){ 

LCD.drawInt(34,0,0); 
} 

} 
} 

private void investigate(int i) throws IOException,InterruptedException{ 
while (true){ 

try{ 
int x = in.get(i).readInt(); 
int y = in.get(i).readInt(); 

//go to location 
thisBot.goToPoint(x,y); 
//camera captures rect information and saves for later 
Rectangle rect = cam.getRectangle(0); 
rects.add(new Rectangle(thisBot.getX(),thisBot.getY(), 

rect.height,rect.weight); //records size and location of each tracked object 
break; 

}catch(IOException e){} 
} 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class  GagaSubcommand extends CommandCenter{ 
private UltrasonicSensor ultra; 
private LightSensor light; 
private Random gen; 

private boolean autonomous; 
private boolean ready; 
private int botID; 

public GagaSubcommand(int id, MovementCenter bot){ 
gen = new Random(); 
ultra = new UltrasonicSensor(SensorPort.S1); 
light = new LightSensor(SensorPort.S3); 
autonomous=true; 
super(id,bot);

} 

public void executeCommand() throws IOException, InterruptedException{ 
if(autonomous){//explore, then send 

Thread.sleep(200); //let sensors warm up 
if (ultra.getDistance() < 160 || light.readValue()>40){ 

Sound.playTone(1760,1000); 
//found something, send notify parent of coordinates! 
this.requestInvestigation(); 

} 
int dX = gen.nextInt(3); 
int dY = gen.nextInt(3); 
if (gen.nextInt()%2==1) 

dX = dX*-1; 
if (gen.nextInt()%2==1) 

dY = dY*-1; 
thisBot.goToPoint(thisBot.getX()+dX,thisBot.getY()+dY); 

} 
} 



 
private void requestInvestigation()throws IOException, InterruptedException{ 

out.get(0).writeInt(CommandCenter.INVESTIGATE); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 
//send workers
out.get(1).writeInt(CommandCenter.WORK); 
out.get(1).writeInt(thisBot.getX()); 
out.get(1).writeInt(thisBot.getY()); 
out.get(1).flush(); 
out.get(2).writeInt(CommandCenter.WORK); 
out.get(2).writeInt(thisBot.getX()); 
out.get(2).writeInt(thisBot.getY()); 
out.get(2).flush(); 

} 
}



import lejos.nxt.*; 
import lejos.nxt.comm.*; 
import lejos.nxt.addon.*; 
import javax.bluetooth.*; 
import java.io.*; 
import java.util.*; 
import java.awt.Point; 

public class GagaLeaf extends CommandCenter{ 

public GagaLeaf(int id, MovementCenter bot){ 
super(id,bot);

} 
public void executeCommand() throws IOException,InterruptedException{ 

while (true){ 
try{ 

int command = in.get(0).readInt(); 

if (command == CommandCenter.INITIALIZE_LOCATIONS) 
initializeLocations(); 

if (command == CommandCenter.WORK) 
work(); 

}catch (IOException e){ 
} 

} 
} 

public void initialize() throws IOException{ 
//connect to parent 
addConnection(Bluetooth.waitForConnection()); 
ready = true; 

} 

private void initializeLocations() throws IOException{ 
out.get(0).writeInt(0); 
out.get(0).writeInt(botID); 
out.get(0).writeInt(thisBot.getX()); 
out.get(0).writeInt(thisBot.getY()); 
out.get(0).flush(); 

} 

private void work() throws IOException,InterruptedException{ 
while (true){ 

try{ 
int x = in.get(0).readInt(); 
int y = in.get(0).readInt(); 



//go to location 
thisBot.goToPoint(x,y); 


