
Robotic Swarm Networks: A Low-Cost Alternative Robotic Solution

for Surveillance, Documentation, and Resource Gathering

Ryan Gadsby, May 2010

Boston College Computer Science Departmen

INTRODUCTION

I. The growing role of robots in human society

Humanity has come to rely on robots in many aspects of society. In the industrial sector,

we have intricate, precise, robotic installations designed to either manufacture or inspect various

goods, such as automobiles. In the commercial sector, floor-crawling rovers vacuum floors, freely

available to anyone with the inclination and disposable income to do so. On the surface of Mars,

the twin observational rovers Spirit and Opportunity scour the dusty red landscape, transferring

job too costly, dangerous, and time-consuming for humans to perform is one of the foremost

applications of robotic technology. (Mars Exploration Rover project)

Robot-assisted or completely unmanned surgery has become a way for doctors to reliably

perform different operations with a degree of precision impossible to duplicate by human hands

alone. Robots can delicately perform minimally invasive tasks that human hands cannot, simply

because of the smaller size and locations of interaction that can be handled by machine. Robotic

http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://www.irobot.com/sp.cfm?pageid=203

their sensory data with each other. (K.A.Hawick, H.A.James, J.E.Story and R.G.Shepherd, 2007)

Applications for swarm robotics present themselves at many levels of technology. Where

primitive swarm members are appropriate for doing a basic physical task - such as mining,

surveying, or foraging – swarms can be a preferable alternative to using human labor due to

health risks or general tedium. Where miniaturization is a factor, swarm robotics can be applied

to nanotechnology or micromachinery to handle distributed sensory tasks in the human body. By

decentralizing intelligence we allow for more primitive swarm members, instead relying on

parallel computation to perform tasks using macroscopic control over the entire swarm. As a

whole, however, swarm robotics has yet to emerge outside of the research sector, and there are no

current commercial, military, or recreational implementations of it. (

swarm member (or a subset of the swarm) 'figures out' how to accomplish something, the entire

swarm is able to capitalize upon this knowledge. This combination of simulating social insect

behavior with artificial evolution allows SYMBION swarms to perform tasks such as linking up

they are required to encounter, robots tend to be rather costly to engineer in terms of time and,

subsequently, currency. As a result of these costs, it often becomes difficult to justify subjecting

these machines to harsh environments that may damage them. While addressable, these concerns

must weigh heavily in the mind of any engineer before making any attempt to approach a

problem from a robotic point of view.

Power consumption is one of the largest barriers to effectively applying robotic

technology to humanity's problems. Batteries simply do not last long enough to power a robot's

motors and sensors for many tasks, especially those which last a long time such as exploration. A

common solution is to use solar panels, such as on the Mars rovers Spirit and Opportunity, but

solar panels don't generate enough energy to keep robots functioning constantly, and certain

environmental factors can render them useless altogether. Robots need access either to a constant

energy source or intermittent contact with an energy source in order to maintain function as

produced (after great care is taken to select the right array of motors and sensors to accomplish

In terms of power consumption, robotic swarms tend to have many advantages when

compared to larger, more complicated robots. Their smaller, more primitive motors, sensors, and

CPUs simply use less energy, although they are also typically equipped with smaller batteries.

However, since the swarm is composed of many smaller units, allowing one to rest and recharge

via solar panels or some sort of energy source allows the swarm to continue its work relatively

unimpeded. The collective capacity to do work before recharging in a swarm will be greater than

that done by a single robot, and work will always still be done even as individual members have

entered an inactive mode in order to recharge their batteries. (Schmickl and Crailsheim, 2006)

Imprecise movement is still a problem for robotic swarms, but swarms are better equipped

to meliorate the impact of the issue than singular robots. By being able to pinpoint or even

estimate each robot's position relative to its brothers, we can construct a much more reliable

model of a given robotic operation than relying on one robot's impressions of its surroundings.

Multiple cameras can be used to create a stereoptic analysis of a system, and the collective

estimations therein can be averaged to provide a realistic if imperfect snapshot of the

environment the swarm is deployed to. This way, we can have a proficient system of reckoning

without having to rely on a costly absolute system such as GPS or radar. (Moeslinger, Schmickl

and Crailsheim, 2009)

The emphasis on using many smaller, less sophisticated robots to perform a task in swarm

robotics is often a more cost-effective solution than having one or two intricate machines. Swarm

members are typically not designed with durability or multi-tasking in mind, and can therefore be

equipped with inexpensive sensors, motors, and CPUs. Some sensors can become very expensive

as higher qualities are necessary, such as cameras and infrared detectors, but we need not equip

every member of the swarm similarly. Indeed, using the sensor network of the entire swarm, it is

“hive-mind” of the swarm. (Schmickl and Crailsheim, 2006)

Because of the low cost of individual machines, members of a swarm can be viewed as

expendable, allowing them to perform tasks that one might think twice about using a single

expensive robot for. While we might be hesitant to send a multi-million dollar automated

submersible to examine undersea volcanic vents, a member of a swarm can perform this task ably

with a cheap camera and whatever relevant sensors while transmitting any data back to his

brothers before getting destroyed. This allows us to completely automate certain tasks that are

normally left to humans themselves – or at least humans remotely controlling robots – without

worry.

Aside from providing methods to overcome the main issues with mobile robotic

technology, swarm robotics gives us ways to perform tasks that would simply be infeasible for

normal robots. Robots tend to move sluggishly, and where time is an issue their employment is

often unattractive. One or two robots, no matter how sophisticated, are not an optimal way to

search for survivors in collapsed mine, to sniff out explosive devices in a sprawling urban

number of variables that could cause something to go horribly wrong increase greatly, and must

be accounted for to have any reasonable application of swarm technology. Using more primitive

sensors and motors can also degrade the quality of the work done by the swarm. They are not

suitable for undertaking tasks that require very specific observations or sensory input, like

exhaustively exploring an entire area and surveying it to produce an accurate map.

With a single robot, one must only account for one set of sensors, one CPU, and one body

of code. This is sadly not so in a swarm. By having multiple robots equipped with a variety of

sensors on a robot-by-robot basis, there are several different protocols that must be accounted for

Because the physical hardware swarm robots are equipped with tend not to be terribly

sophisticated, more problems arise. The lack of high-quality sensors and motors can make

swarms unsuitable for tasks that require detailed sensory feedback or delicate movement. For

example, equipping every robot in the swarm with a high resolution, telescopic lens camera

defeats the purpose of using a swarm as a cost-effective alternative to a single sophisticated

robot. They are better suited to tasks that merely require imprecise calculation: searching for the

general location of a resource, or estimating the depth of a cave, for example.

METHODOLOGY

1. The NXT Brick from LEGO Mindstorms

All swarm implementation was done in Java using ten Lego NXT “bricks” equipped with

leJOS firmware. These relatively inexpensive computers come in packages with modular,

interchangeable sensors and motors that made it easy to test different configurations. Moreover, a

third-party camera designed for the NXT was also used. Ten skeletal robots were assembled, and

several different network models were tested.

The NXT Brick itself possesses an ARM7 microprocessor clocked at the relatively

unimpressive speed of 46 megahertz and a meager cache of 32 kilobytes. While this is more than

enough computing power to handle basic motor, sensor, and communication routines, it severely

limits any sort of complicated data processing that can be done by the swarm without relying on

an external source. Luckily, the distributed nature of the swarm helps alleviate this drawback, as

computational tasks can be relegated to inactive members.

NXT Bricks can currently only interface with one type of motor, which is included in the

Mindstorms kit. It's an electric servo motor with a high degree of motion accuracy thanks to its

on-board tachometers: accurate to within one degree of specificity. Any sort of locomotive task –

either moving the robot itself or manipulating an object – was undertaken using one or more of

these motors.

The Mindstorms kit comes with a variety of sensors, and many third-party sensors have

been developed for the NXT brick. Included are:

! A touch sensor that simply gives binary feedback for touch or release.

! A light sensor that gives quantitative feedback of light intensity overall, or the

light intensity of certain colors.

! A sound sensor that gives quantitative levels of sound in either dB or dBA.

! An ultrasonic sensor that approximates the distance of an external object by

emitting an infrared “ping”.

! An accelerometer that measures the rotational position of the robot.

! A compass sensor to tell the heading of the robot with regards to magnetic north.

! An RFID sensor that gives feedback to match a given RFID frequency.

Moreover, cameras have been developed via third parities to give the robot a way of

visually interfacing with its environment. For this thesis, the NXTCam developed by <> was used

for this purpose. The proprietary sensors used were limited to the ones included in the

Mindstorms kit: the touch, light, sound, and ultrasonic sensors. This is because of the cost

associated with extra sensors whose function was either limited for the scope of this thesis or

could readily be duplicated with the other sensors.

The NXT brick has seven ports designed for 4-conductor cables to connect to: three for

motors labeled A,B, and C, and four for sensors with numeric labels. To keep the solution of

cost-effectiveness in mind, most of the bricks were equipped with only 2 motors and 2 or less

sensors. Many members of the swarm were not equipped with sensors at all. This kept each

member's functionality at bare minimal levels in order to demonstrate the power of the swarm as

a whole.

The NXT bricks have important limitations that accentuate the problem of using more

primitive hardware for a swarm as compared to a single robot. The most drastic limitation by far

is the connection limit of the NXT's on-board Bluecore chip that handles Bluetooth

communication. A given NXT brick may only maintain three connections at once, whether they

are to other NXT bricks or other Bluetooth devices such as a GPS receiver or a laptop. As such,

swarm structures were inherently limited to hierarchical configurations rather than fully-

connected graphs that a swarm would ideally possess. This could be worked around by deleting

and reinstating connections at runtime, but the significant increase in running time wasn't

justified when any data could be relayed through the hierarchy more quickly with the proper

network implementation.

The other limitation was the memory capacity of the NXT brick. Each brick only has

256K of flash memory, more than half of which was taken up by the leJOS firmware. This

limited not only the amount of Java classes that could be used in implementing the swarm's

behavior, but also the amount of persistent image data that could be relayed back to an external

source.

II. The leJOS custom firmware

used up by the firmware itself – steps must be taken to conserve the remaining amount of

memory carefully. As such, it often is a smarter solution to use predefined arrays instead of

these at runtime thanks to the leJOS's lack of command line interface. The top member of the

swarm hierarchy maintains a list of all positions of members of the swarm, and the swarm is

initialized via the masters' requests for every member's position. After this, the swarm begins to

act autonomously, although behavior varies by swarm configuration.

The master maintains three separate connections to the mid-level members of the swarm,

Each CommandCenter has an object called MovementCenter that track's the robots facing

and position and handles each robot's movement subroutines. It can be calibrated for any given

surface, and uses a Cartesian grid system relative to the starting position of the master robot in

the swarm. It can be told to go to a point, or to simply face a point. The amount of rotation and

movement are handled by using simple Cartesian distance formulas to calculate the distance, and

could also be used to simply document an object or an environment from multiple perspectives

for the sake of completeness or redundancy of information.

V. Swarm configuration Parker

The second sensor configuration for the swarm is called “Parker”. It works essentially as

an inversion of the Triforce configuration. The root node is equipped with camera instead of the

second command level, and the second command level function as investigators using the light

and ultrasonic sensors. As in Triforce, the leaf robots are used to process data and perform simple

mundane tasks, as they are sensorless. Most importantly, however, they are used to relay objective

data to outside sources, alerting them to the position and condition of a given objective.

Compared to Triforce, Parker's strength lies in the ability to cover ground to find potential

objectives to document as quickly as possible. It is akin to a search-and-rescue or resource-

locating swarm as opposed to the observational nature of the Triforce configuration.

VI. Swarm configuration Gaga

Gaga, the last swarm configuration, differs from Triforce and Parker in that it is designed

to accomplish work by physically interacting with its environment. Here, the leaf robots are used

swarm configuration is best-suited to a wide-scale environmental task such as taking soil samples

or agricultural foraging.

VII. The tasks

One task was chosen for each swarm configuration. The time taken to complete each task

was recorded for both the corresponding swarm and a single bot equipped to do each task on its

own. All of the “objectives” used in these tasks are simply red plastic cups placed at random

locations in the environment that the swarm (or single robot) explores. Three timed trials for each

swarm were taken.

The task for Triforce involves documenting an objective from several perspectives. For the

Triforce swarm, the root node is used to locate these objectives while the subcommanders

simultaneously document it using cameras. For the analogous single robot, the robot must do all

The task for Gaga is similar to Parker's, but instead physical work must be performed on

the objectives. To simulate these actions, any robots defined as workers spin in place for 30

seconds at the objective to demonstrate a physical task, such as drilling or gathering a sample.

The singe robot must wait until this work is completed before it can continue searching for

another objective. In all other aspects, at the root commander and subcommander level, the task

is the same as that undertaken by the Parker swarm.

IV. Conclusions

The general trend with the NXT swarms was that they were consistently able to perform

their given tasks significantly faster than single robots. However, this only applies when the tasks

themselves were completed. Due to problems with pathing, reckoning, synchronization and

communication, colliding swarm members inhibited the swarm's ability to actually finish the task

at hand.

Parker, however, was unaffected by this as its immobile leaf robots and inherently

divergent subcommander movement patterns prevented any collisions. Triforce and Gaga, due to

their more active leaf robots, were more likely to experience a fatal crash that rendered their task

not completable.

This problem could have been alleviated by more efficient pathing algorithms, or

allowing the swarm to give a more thorough estimation of its current density at given locations as

environmental features to avoid.

REFERENCES

" Mars Exploration Rover project, NASA/JPL document NSS ISDC 2001 27/05/2001

" Ahmed K; Khan MS; Vats A; Nagpal K; Priest O; Patel V; Vecht JA; Ashrafian H; et al. (Oct

2009). Int J Surg. 7:431-440

" K.A.Hawick, H.A.James, J.E.Story and R.G.Shepherd, An Architecture for Swarm Robots

p2-3

" Waldner, Jean-Baptiste (2007). Nanocomputers and Swarm Intelligence. London: ISTE .

pp. 242-p248

" Schmickl and Crailsheim, A navigational algorithm for swarm robotics inspired by slime

mold aggregation, Second SAB 2006

" Sevan G. Ficici, Richard A. Watson, Jordan B. Pollack, Embodied Evolution: A Response to

Challenges in Evolutionary Robotics, Eighth European Workshop on Learning Robots, 1999

" Jason Teo, Darwin + Robots = Evolutionary Robotics: Challenges in Automatic Robot

Synthesis ,

http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://www.symbrion.eu/tiki-download_file.php?fileId=409
http://www.symbrion.eu/tiki-download_file.php?fileId=409
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://www.symbrion.eu/tiki-download_file.php?fileId=407
http://www.symbrion.eu/tiki-download_file.php?fileId=407
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://en.wikipedia.org/wiki/ISTE
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf

Mobile Robot’s Energy Consumption and Conservation Techniques , pp4-5, 2005

" Hakyoung Chung , Lauro Ojeda, and Johann Borenstein, Sensor fusion for Mobile Robot
Dead-reckoning With a Precision-calibrated Fiber Optic Gyroscope , pp2-3, 2001 IEEE
International Conference on Robotics and Automation, Seoul, Korea, May 21-26, pp.
3588-3593

" Christoph Moeslinger1 , Thomas Schmickl1 , and Karl Crailsheim1: A Minimalist Flocking

Algorithm for Swarm Robots, 2009

http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf
http://trs-new.jpl.nasa.gov/dspace/bitstream/2014/12837/1/01-1164.pdf

public void initialize() throws IOException{
//botLocation.add(botID, new Point(thisBot.getX(),thisBot.getY()));

//connect to parent
addConnection(Bluetooth.waitForConnection());
//connect to children
for (int i = 1; i<3;i++){

RemoteDevice rd = Bluetooth.getKnownDevice("Gadsby" +(i+botID));
addConnection(Bluetooth.connect(rd));

}
//good to go
ready = true;

}
public boolean isReady(){

return ready;
}

}

this.waitForDocumentation();
}

}

private void requestPositionUpdates() throws IOException{
for (int i = 0;i<3;i++){

try{
DataInputStream dis = in.get(i);
DataOutputStream dos = out.get(i);

dos.writeInt(CommandCenter.INITIALIZE_LOCATIONS);
dos.flush();
LCD.drawInt(i,i,i);
int response = dis.readInt();
LCD.drawInt(response,4,4);
if (response != CommandCenter.BUSY && response !=

CommandCenter.NO_CHANGE){
//get botID and point, add it to locations.
botLocation.add(dis.readInt(),new

Point(dis.readInt(),dis.readInt()));

}
return new Point(x/botLocation.size(),y/botLocation.size());

}

private boolean locationOccupied(int x, int y){
for (Point p : botLocation){

if (x == p.x || y == p.y)
return true;

}
return false;

}

private void waitForDocumentation()throws IOException{
while (true){

for (int i = 0; i<3;i++){
int c = in.get(i).readInt();
if (c == CommandCenter.DOCUMENTED){

LCD.drawString("Bot " + i + " finished",i,i);
}

}
Button.waitForPress();

}
}

}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class TriforceSubcommand extends CommandCenter{
private NXTCam cam;

private boolean selfreported;
private boolean child1reported;
private boolean child2reported;

public TriforceSubcommand(int id, MovementCenter bot){
super(id,bot);
cam = new NXTCam(SensorPort.S1);
ready =false;
selfreported = false;
child1reported = false;
child2reported = false;

}

public void executeCommand() throws IOException,InterruptedException{
while (true){

try{
int command = in.get(0).readInt();

if (command == CommandCenter.INITIALIZE_LOCATIONS)
initializeLocations();

if (command == CommandCenter.INVESTIGATE)
investigate();

}catch (IOException e){
}

}
}

private void initializeLocations() throws IOException{
LCD.drawInt(0,0,0);
if (!selfreported){

out.get(0).writeInt(0);
out.get(0).writeInt(botID);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();
selfreported=true;

}
else if (!child1reported){

out.get(0).writeInt(0);
out.get(0).writeInt(botID);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();
child2reported=true;

}
else if (!child2reported){

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class TriforceLeaf extends CommandCenter{
public TriforceLeaf(int id, MovementCenter bot){

super(id,bot);
}
public void executeCommand() throws IOException,InterruptedException{

while (true){
try{

int command = in.get(0).readInt();
if (command == CommandCenter.INITIALIZE_LOCATIONS)

initializeLocations();
if (command == CommandCenter.INVESTIGATE)

investigate();
}catch (IOException e){
}

}
}

public void initialize() throws IOException{
addConnection(Bluetooth.waitForConnection());
ready = true;

}

private void initializeLocations() throws IOException{
out.get(0).writeInt(0);
out.get(0).writeInt(botID);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();

}

private void investigate() throws IOException,InterruptedException{

while (true){
try{

int x = in.get(0).readInt();
int y = in.get(0).readInt();

//go to location
thisBot.goToPoint(x,y);
out.get(0).writeInt(CommandCenter.DOCUMENTED);
out.get(0).flush();
break;

}catch(IOException e){
//Thread.sleep(500);

}
}

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import java.util.*;

public class MovementCenter{
public static final int LATERAL_CONSTANT = 1500;
public static final double RADIAL_CONSTANT = .13;

private int posX;
private int posY;
private float dirX;
private float dirY;

public static void main(String[] args) throws InterruptedException{
MovementCenter thisBot = new MovementCenter(0,0,0f,1.0f);
Thread.sleep(3000); //3 second delay
thisBot.moveToFace(1,1);
thisBot.moveToFace(-1,-1);
thisBot.approachPoint(4,3);
thisBot.approachPoint(0,0);

}

public MovementCenter(int px, int py, float dx, float dy){
Motor.A.setPower(50);
Motor.C.setPower(50);
this.posX = px;
this.posY = py;
this.dirX = dx;
this.dirY = dy;

}

public void move(float munits) throws InterruptedException{
//positive is forward. Motors A and C are wheels.
if (munits>0){

Motor.A.forward();
Motor.C.forward();

}
if (munits<0){

Motor.A.backward();
Motor.C.backward();
munits = munits * -1;

}

Thread.sleep(Math.round(munits*LATERAL_CONSTANT));
Motor.A.stop();

Motor.C.stop();
//forced wait to keep motors from bucking with constant movement
Thread.sleep(200);

}

public void rotate(int degrees) throws InterruptedException{
//positive is counterclockwise
if (degrees>0){

Motor.A.forward();
Motor.C.backward();

}
if (degrees<0){

Motor.A.backward();
Motor.C.forward();
degrees = degrees * -1;

}
Thread.sleep((long)Math.round(50*degrees*RADIAL_CONSTANT));
Motor.A.stop();
Motor.C.stop();
Thread.sleep(200);

}

public void goToPoint(int x, int y) throws InterruptedException{

float v2x = x - posX;
float v2y = y - posY;
int angle = (int)Math.round(Math.toDegrees(Math.atan2(v2y,v2x) -

Math.atan2(dirY,dirX)));
this.rotate(angle);
float distance = (float)Math.sqrt((x-posX)*(x-posX)+(y-posY)*(y-posY));
this.move(distance);
posX = x;
posY= y;
//make new direction vector via projection of onto destination
float length =(float)Math.sqrt(v2x*v2x+v2y*v2y);
dirX= v2x/length;
dirY= v2y/length;

}

public void moveToFace(int x, int y) throws InterruptedException{
//create vector, calculate angle
float v2x = x - posX;
float v2y = y - posY;
int angle = (int)Math.round(Math.toDegrees(Math.atan2(v2y,v2x) -

Math.atan2(dirY,dirX)));

this.rotate(angle);

//make new direction vector via projection of onto destination
float length =(float)Math.sqrt(v2x*v2x+v2y*v2y);
dirX= v2x/length;
dirY= v2y/length;

}

public int getX(){
return posX;

}
public int getY(){

return posY;
}

public void approachPoint(int x, int y)throws InterruptedException{//get within 3 units of
target

int dx = this.posX - x;
int dy = this.posY - y;
int targetX=x, targetY=y;
if (dx > 0)

targetX = x+1;
if (dx < 0)

targetX = x-1;
if (dy > 0)

targetY = y+1;
if (dy < 0)

targetY = y-1;

this.goToPoint(targetX,targetY);

dirX= v2x/length;
dirY= v2y/length;

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class ParkerRootCommand extends CommandCenter{

private List<Point> botLocation;
private List<Rectangle> rects;
private NXTCam camera;

public ParkerRootCommand(int id, MovementCenter bot){
camera = new NXTCam(SensorPort.S1);
botLocation = new ArrayList<Point>();
rects = new ArrayList<Rectangle>();
super(id,bot);

}

public void executeCommand() throws IOException,InterruptedException{
while (true){

try{
for (int i = 0; i<3;i++){ //alternate between channels

int command = in.get(i).readInt();
if (command == CommandCenter.INVESTIGATE)

investigate();
else

reportResults();
}

}catch (IOException e){
}

}
}
private void reportResults() throws IOException{

//write results back to computer
con.get(0).close(); //because of three-connection limit
BTConnection c = Bluetooth.waitForConnection();
DataOutputStream dos = c.openDataOutputStream();
for (Rectangle rect:rects){

dos.writeInt(rect.x);
dos.writeInt(rect.y);
dos.writeInt(rect.width);
dos.writeInt(rect.height);
dos.flush();

}
}

private void requestPositionUpdates() throws IOException{
for (int i = 0;i<3;i++){

try{
DataInputStream dis = in.get(i);
DataOutputStream dos = out.get(i);

dos.writeInt(CommandCenter.INITIALIZE_LOCATIONS);
dos.flush();
LCD.drawInt(i,i,i);
int response = dis.readInt();
LCD.drawInt(response,4,4);

private void requestInvestigation()throws IOException, InterruptedException{

out.get(0).writeInt(CommandCenter.INVESTIGATE);

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class ParkerLeaf extends CommandCenter{

public ParkerLeaf(int id, MovementCenter bot){
selfreported = false;
super(id,bot);

}

public void executeCommand() throws IOException,InterruptedException{
while (true){

try{
int command = in.get(0).readInt();

if (command == CommandCenter.INITIALIZE_LOCATIONS)
initializeLocations();

if (command == CommandCenter.REPORT)
report();

}catch (IOException e){
}

}
}

public void initialize() throws IOException{
//connect to parent
addConnection(Bluetooth.waitForConnection());
ready = true;

}

private void initializeLocations() throws IOException{
out.get(0).writeInt(0);
out.get(0).writeInt(botID);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();

}

private void report() throws IOException,InterruptedException{
while (true){

try{
int x = in.get(0).readInt();

int y = in.get(0).readInt();

addConnection(Bluetooth.waitForConnection());
in.get(1).writeInt(x);
in.get(1).writeInt(y);

}catch(IOException e){
//Thread.sleep(500);

}
}

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class GagaRootCommand extends CommandCenter{

private List<Point> botLocation;
private List<Rectangle> rects;
private NXTCam camera;

public GagaRootCommand(int id, MovementCenter bot){
camera = new NXTCam(SensorPort.S1);
botLocation = new ArrayList<Point>();
rects = new ArrayList<Rectangle>();
super(id,bot);

}

public void executeCommand() throws IOException,InterruptedException{
while (true){

try{

}

private void requestPositionUpdates() throws IOException{
for (int i = 0;i<3;i++){

try{
DataInputStream dis = in.get(i);
DataOutputStream dos = out.get(i);

dos.writeInt(CommandCenter.INITIALIZE_LOCATIONS);
dos.flush();
LCD.drawInt(i,i,i);
int response = dis.readInt();
LCD.drawInt(response,4,4);
if (response != CommandCenter.BUSY && response !=

CommandCenter.NO_CHANGE){
//get botID and point, add it to locations.
botLocation.add(dis.readInt(),new

Point(dis.readInt(),dis.readInt()));
dos.writeInt(CommandCenter.CONFIRMED);

}
}catch(IOException e){

LCD.drawInt(34,0,0);
}

}
}

private void investigate(int i) throws IOException,InterruptedException{
while (true){

try{
int x = in.get(i).readInt();
int y = in.get(i).readInt();

//go to location
thisBot.goToPoint(x,y);
//camera captures rect information and saves for later
Rectangle rect = cam.getRectangle(0);
rects.add(new Rectangle(thisBot.getX(),thisBot.getY(),

rect.height,rect.weight); //records size and location of each tracked object
break;

}catch(IOException e){}
}

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class GagaSubcommand extends CommandCenter{
private UltrasonicSensor ultra;
private LightSensor light;
private Random gen;

private boolean autonomous;
private boolean ready;
private int botID;

public GagaSubcommand(int id, MovementCenter bot){
gen = new Random();
ultra = new UltrasonicSensor(SensorPort.S1);
light = new LightSensor(SensorPort.S3);
autonomous=true;
super(id,bot);

}

public void executeCommand() throws IOException, InterruptedException{
if(autonomous){//explore, then send

Thread.sleep(200); //let sensors warm up
if (ultra.getDistance() < 160 || light.readValue()>40){

Sound.playTone(1760,1000);
//found something, send notify parent of coordinates!
this.requestInvestigation();

}
int dX = gen.nextInt(3);
int dY = gen.nextInt(3);
if (gen.nextInt()%2==1)

dX = dX*-1;
if (gen.nextInt()%2==1)

dY = dY*-1;
thisBot.goToPoint(thisBot.getX()+dX,thisBot.getY()+dY);

}
}

private void requestInvestigation()throws IOException, InterruptedException{

out.get(0).writeInt(CommandCenter.INVESTIGATE);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();
//send workers
out.get(1).writeInt(CommandCenter.WORK);
out.get(1).writeInt(thisBot.getX());
out.get(1).writeInt(thisBot.getY());
out.get(1).flush();
out.get(2).writeInt(CommandCenter.WORK);
out.get(2).writeInt(thisBot.getX());
out.get(2).writeInt(thisBot.getY());
out.get(2).flush();

}
}

import lejos.nxt.*;
import lejos.nxt.comm.*;
import lejos.nxt.addon.*;
import javax.bluetooth.*;
import java.io.*;
import java.util.*;
import java.awt.Point;

public class GagaLeaf extends CommandCenter{

public GagaLeaf(int id, MovementCenter bot){
super(id,bot);

}
public void executeCommand() throws IOException,InterruptedException{

while (true){
try{

int command = in.get(0).readInt();

if (command == CommandCenter.INITIALIZE_LOCATIONS)
initializeLocations();

if (command == CommandCenter.WORK)
work();

}catch (IOException e){
}

}
}

public void initialize() throws IOException{
//connect to parent
addConnection(Bluetooth.waitForConnection());
ready = true;

}

private void initializeLocations() throws IOException{
out.get(0).writeInt(0);
out.get(0).writeInt(botID);
out.get(0).writeInt(thisBot.getX());
out.get(0).writeInt(thisBot.getY());
out.get(0).flush();

}

private void work() throws IOException,InterruptedException{
while (true){

try{
int x = in.get(0).readInt();
int y = in.get(0).readInt();

//go to location
thisBot.goToPoint(x,y);

