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Abstract: This thesis concentrates on the vulnerabilities of the
RSA Cryptographic Algorithm when it is not securely
implemented. While it has been proven that a brute force attack on
the algorithm is not practical there remain aspects of the algorithm
that require proper use to prevent back-door attacks. The attacks
performed in this thesis attempt to exploit both mathematical and

inherent timing vulnerabilities of the algorithm. Furthermore,
simple practices which prevent theses attacks are discussed.

RSA Cryptographic Algorithm

Developed by Ron Rivest, Adi Shamir, and Len Adleman in 1977 the RSA
public-key cryptographic algorithm has since been widely used in a variety of computer
security applications.

The first step of the algorithm is to select two different prime numbers, p and g.
Next we calculate the modulus (n = p x q) and secondary modulus (¢(n) = (p-1) x (g-1)).
We then select an integer e, our public key, such that e is a positive number less than and
relatively prime to ¢(n). Finally, we take the inverse of e mod ¢(n) to produce d, our
private key.[1] All of the aforementioned steps are used in practice with very large

numbers to ensure added security. The size of these numbers has increased over time in
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If Alice and Boe want to have a private conversation they each generate their own
public and private keys and trade public key setsq PubKgo = €pos Npos j.' If Bob wishes
to send @ essage to Alice he encrypts his plainte #%vith the public key of Alice:

Caon = Muad "¢ 0d nic
and Alice uses her private key to decrypt thew essage

Aw alicious cop puter user can very easily obtain public key info% ation as it is

cop e on knowledge on the network and encrypted® essages can be obtained by



Kocher Timing Attack
The implementation of a timing attack on the RSA cryptographic system exploits
variations in the computation time of the decryption of the ciphertext. We start by
analyzing a simple modular exponentiation for decryption M = C*(mod ngwhere C has
been obtained by eavesdropping on an ongoing conversation and the public key (e, nds
public knowledge. The following algorithm is used for the decryption where w is the
number of bits, and the most significant bit is defined as '0":
Let So = 1,
For k = 0 upto w-1:
If (bit k of d4s 1 then
Let M, = (sg~ C4mod n.
Else
Let Mk: Sk .
Let s,; = Mi>mod n.

EndFor.

Return (M, 4
Figure 1

Since computer operations are not always performed in constant speed we need to
assemble a group, or block, of ciphertexts to develop reliable results. Using this block
(the size of which will be discuss later in this paper 4we now begin the timing portion of
the attack, first computing the time needed to decrypt the message with the actual private

exponent for each ciphertext (obtained by sending the ciphertext and modulus to the

server4l =e+ X 't. , where t;corresponds to the amount of time needed to perform

the decryption on bit i of the ciphertext and e represents the overhead within the

decryption. At this point it is important to note that although the decryption algorithm



above begins with k=0, the '0" is actually referring the most significant bit of the private
key. We gather a block of ciphertexts and calculate the time to decrypt our private guess
with the most significant bit equal to a 0 (T,) and a 1 (T,) for a single iteration of the
decryption loop. By subtracting the guesses Toand T, from T we are left with the time
that it takes to compute the guessed bits. Taking in to account the extra time needed by
the algorithm to “decrypt” a bit that is set, as explained above, by simply computing the
variances and subsequently comparing them we are now able to predict the first bit of the
private key.

Notice that when bit k of d is set we do modular multiplication whereas when is
not set there is a simple assignment. The time needed to perform the modular
multiplication as well as the squaring is significantly more than the simple assignment
and squaring and it is on this difference that we will focus our attack.

In theory, when comparing the variances of the two guesses the correct guess
would have a smaller variance from the actual time expected. With the first bit guessed
we can now proceed to the second and repeat the same procedure. As more bits are
correctly guessed the timing period will increase, which in turn creates more stable
results and higher percentage of correct guesses. On the other hand an incorrect guess
would result in larger variance numbers indicating that you need to re-guess the previous
bit.

After proving that the algorithm is exploitable the next step is to gather a block of
ciphertexts, either by eavesdropping on an ongoing conversation or generating them
using the previously obtained public exponent and modulus for the conversation. The

experimental results, obtained by analysis of RSAREF Modular Multiplication and



Modular Exponentiation times, of Kocher's paper show that a block of 250 ciphertexts
should produce the correct result 84% of the time. [2]
Kocher Implementation Attempts

Using the Java Biglnteger package and Java timing package the first attempt at
the attack was mounted. After being unable to obtain meaningful results we looked at the
Java instance of the modular exponentiation routine being used to decrypt the data. We
were able to determine that it was using the Montgomery Multiplication method to
perform the operation, while Kocher's paper suggested a simpler algorithm using
repeated squaring.

After implementing the repeated squaring algorithm and a method to extract the
bits of the Biglnteger keys, a second attempt at Kocher's timing attack was mounted.
While the initial results look promising, repeated attempts showed that the percentage of
most significant bits predicted correctly was hovering around fifty percent. Determined to
produce meaningful results we made a slight alteration to Kocher's attack; rather than
simply guessing that the first bit to be recovered was a '1' and expecting to see a higher
variance when this bit was not set we decided to guess both a '1' and a '0' and compare the
resulting variances.

Once again the percentage of correct results obtained appeared to be nothing more
than a coin flip. Making another slight alteration | decided to have the algorithm attempt
to guess the least significant bit first, but received much the same results. Having
exhausted all possible alterations of the Kocher attack the only logical conclusion was

that we were having problems receiving accurate timing results. In order to combat



inaccurate timing we repeated the timing of



After many hours spent searching the internet for a package with the appropriate
methods for the timing attack, and a few that failed to compile, we finally found
MIRACL or the Multiprecision Integer and Rational Arithmetic C/C++ Library.[10] The
package was largely self-explanatory and came with adequate documentation. The
parameters for the functions were generally in the format of source, source, destination.
The largest adjustment that | had to accommodate for in my code was the fact that the
division algorithm returned the remainder of the division in the first parameter. This
specification required a few extra steps to be taken to insure the data of the variable in the
first argument remained unchanged.

After familiarizing myself with the new package I translated the Java code into C
and looked for a appropriate method of timing. Following testing both inherent C timing
methods and code developed by Bryant and O'Hallaron [4] we decided to go with the
latter, as it offered clock cycle counting.

My code first generates an RSA key set with 256-bit encryption and a small
public key (in the interest of minimizing the time to encrypt of the ciphertexts). It then
enters a loop, which generates a number of ciphertexts (with a randomly generated
number used as the plaintext) specified by the user via the command line and attempts to

recover the most significant bit of the private key using this block of ciphertexts. The
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at constant rate. To my further disappointment while running the script I noticed that an
increased number of ciphertexts in the block was not yielding any improvement in
guessing the bit of the private key. At this point we decided, because of the inaccuracies
of the timing results, we needed to shift our focus away from Kocher's attack and towards
other attacks on the RSA Cryptographic system.
“Practical” Timing Attack

A second attack developed by Dhem, Koeune, Leroux, Mestre, Quisquater, and
Willems uses the same general idea as Kocher's work, but attempts to simplify both the
timing and the calculations performed. They state that although Kocher's idea was
theoretically feasible and he presented a lot of data suggesting its possibility, there is no
evidence that Kocher actually performed the attack himself. [5] The group of Belgian
Computer Scientists were in fact unable to implement Kocher's idea in practice and
decided to shift the focus of the attack. Rather than attacking the entire loop as Kocher
does, they decided to attack the multiplication. Using a cryptographic library developed

for the CASCADE smart card, they attacked the decryption algorithm shown below,



The modular multiplication and squaring performed in this algorithm are done
using the Montgomery method, and it is a small inconsistency in the multiplication
method that Dhem, et. al. exploit. Namely, the method performs and extra subtraction
when the intermediary result of the multiplication is greater than the value of the
modulus. [5] Thus the ciphertexts can be separated into two groups, those that require the
extra subtraction during Montgomery multiplication (C,) and those that do not (C,).

Looking back to the algorithm we can see that the multiplication step is
performed only if bit i of the private key is a '1". Using this knowledge, and the
inconsistencies of the Montgomery multiplication we can see that when the private key is
a 'l' there should be a difference between the execution time of ciphertexts in group C;
and the execution times of the ciphertexts in group C,. Whereas if bit i of the private key
is a'0" we would expect to see no timing difference between the two groups.

Just as with the Kocher attack, while the theory of the attack seems flawless the
implementation presents problems that are hard to solve. Although Dhem, et. al. were
able to recover 128-bit keys using 50,000 samples they do admit to limitations. [5]
Beginning with the simpler of the two problems presented, “How do we know whether
sample A is different than sample B” or how do we determine whether a reduction was
performed on a given ciphertext or not. Although in theory the algorithm should run in
constant time, in reality this is certainly not the case. This being the case we now have a
difficult time identifying not only whether or not a reduction was performed, but also
while running the actual attack we must decide how different the timing of group C; must
be from group C, in order to assign the bit i of the private key to be a'1". The second

problem is inherent to the Montgomery multiplication and impossible to correct without



modifying components to the RSA algorithm. In experimental results the Belgian group
found that when RSA is allowed to operate as it should the extra reduction is only
performed only 17% of the time. They were able to increase this probability to numbers
as high as 50% by fixing the modulus and one of the factors, however these modifications
would not be performed in practice and thus compromises the effectiveness of the
attack.[5]

With this in mind the group reworked their attack to concentrate on the squaring
operation that is performed figure 2 The attack on the square works essentially the same
way as its multiplication counterpart, again relying on the extra reduction performed
when using the Montgomery method. Rather than simply timing the entire loop and
attempting to identify whether or not a multiplication was performed the attack is stopped

right before the if statement, and from here the timing begins. As a result, instead of



do the samples have to be) is also solved, as we are looking at a comparison between a
guess of '1' or a guess of '0' and the actual time. Since we now have a predetermined point
of reference we no longer have to calibrate our difference margin.

While very excited about the new and seemingly more successful timing attack as
proposed by Dhem, Koeune, Quisquater and Willems, we realized that the issue of
accurate timing results had not gone away. The paper by the Belgian scientists suggests
that the attack is based on a variation in timing of 422 clock cycles out of 7,400,000, so it
was clear to us that the accuracy of measurements was still crucial to the success of the
attack. [5] So we decided that prior to any attempts at implementing the attack we should
first secure accurate timing results.

Timing Trials and Tribulations

The first timing trials were performed using the Bryant and O'Halloran [4] code to
time a multiplication, and a squaring using both the Lenstra LIP package [9] and the Scott
MIRACL package.[10] The numbers that were used were randomly generated, with a

ceiling of 2'%-1, using the random number generators supplied by the respective



consistency and more importantly, with the exception of two or three samples there does



Figure 4

Additional tests were performed to compute the average time of the operation
over 10000 trials. Statistics from the MIRACL test showed that the repetition seemed to
decrease the randomness of the time values with each run of the test, however, clock
cycle counts still varied largely from run to run. LIP statistics from these tests did not
show any significant improvement over the timing of a single run of the operation,
however, they did correct the high initial time problem.

Running out of options we decided to develop our own timing method using
assembly code, and included a warming of the cache memory prior to the timings. Our
assembly timing method produce much more consistent result, but did not improve the
detection of a reduction step performed in the Montgomery operations.

Cons1, ed » crong nd ¥3e Consny ed ® ct¥on A\(ort.}r

Having little success in obtaining timing results that were accurate enough to

perform a timing attack we decided to slightly shift the focus of the thesis to include other

attacks we can be performed with out the reliance on timing. We were able to find a



comprehensive list of such attacks in a paper written by Daniel Boneh that analyzed the
many attacks that have been attempted since the RSA algorithm had been adopted in
common practice. [6] We looked at each of the attacks and decided to focus on one that
exposed a small private key using the mathematical theory of continued fractions.
Continued fractions are primarily used to discover a close approximation for the
numerator and denominator of a real number when less approximate value of that fraction
is known[7], and as we will shortly see this discovery has significant implications for the
security of the RSA algorithm.[8] The common expression of a continued fraction is as

follows:



4 we first invert the fraction:

For example to compute the continued fraction of 1
1
0+—
E
4
then reduce the fraction in the denominator:
0 1
3
y
4

we repeat by inverting the fraction in the denominator:
1

0+——
2+—
A
3

and finally reduce the denominator to obtain the simple continued fraction:

04— L
1

The continued fraction expansion for 4 is<0 2,13 >,

It can be shown that the fraction can be reconstructed from qo using the following

method:
Ny = qo, do=1,
n=qq+1, d=q,
n; = qif;-», di = qidi-l + di.z fori= 2,’3,...,m

Figure 6 [8]



n
While m is the final reconstructed fraction, the intermediate values for d'— are referred

1

to as convergents. Finally, as per the continued fraction algorithm presented by
Wiener[8]:
Given f', and underestimate of f
hile f is not found
Calculate g
Use figure 6 to construct
<do', 01, -, Qit, i + 1> if s is even,
<Qo, 01, -+, Gi1, 0> if «is odd,
Check whether the constructed fraction is equal to f.
E1‘1)§1 hile
7 t8ure
Notice that 1 is added to the the term ¢; before the convergent is computed if « is a even
number. This is done because the value for the guess of f should always be larger than f',
since f' is an underestimate of actual f, and it can be shown that the convergent for even

values of « without the added value is indeed less than f'.

E posing aS“w il Priv {e“(ey

The attack on a small RSA private key, as developed by Michael Wiener, makes

use of continued fractions in order expose the private key, d. The attack works with a low

private key because the fraction % , Where e is the RSA public key and N is the RSA

. ) £ . d .
modulus, is a close underestimate of — , where k is the result of _« and d is
d ¢(N)+1

the RSA private key. It is important to note that because of the constraint of being a



“close underestimate” it can be show that the attack is only guaranteed to if the private

1
key satisfies the equation, d < %NX .[6]

To expose the private key we use the continued fraction algorithm set forth in the
previous section, with a few modifications and extra calculations to determine whether or
not the convergent yields the correct continued fraction. What follows is a detailed

description of modified continued fraction algorithm.

1

While the guess of d < 1 N
3
Calculate g;'
1
Calculate ri", the remainder when q; is factored out of ——

1—1

Calculate the guess of S as described in the second step of fisu e 7

Calculate the guess of e*d,

d
Calculate the guess of dp(n), given by L%J

We can now perform our first test for an incorrect guess of the private key. If the guess of
(n) is equal to O we can clearly assume that the guess of d is incorrect and forgo the

following two steps.

N —
Calculate the guess of ¢

+
(p > 9) , given by
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which we increase the extent of the search for d by stopping a few loop iterations after

1 . .
3N %2 [6] He points out that the attack is guaranteed to

the suggested boundary of
work with in this boundary, but this does not mean that it will not work outside of the
boundary.

The second improvement has more of a mathematical basis and significantly
increases the discoverable private keys. Wiener states that the denominator of the

underestimate (N) used in the attack is an over estimate of d(n) and, while we don't know

(n) , he suggests a closer overestimate:

[V
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performance of the attack on numbers in that neighborhood. I then ran this script to test
encryption sizes of 256, 512 and 1024-bits. The following graphs represent the results of
the tests on 512-bit and 1024-bit encryption. In order to determine the percentages the
script was run twice, thus percentages represent number of correct exposures over 1000

exposure attempts.

60 61 62 63 64 65 66 67 68

Figure 8

As is shown by the graph above, with 512-bit encryption, by simply allowing the
to run until failure I was able to increase the boundary of insecure private keys by 2% and
still obtain a one hundred percent success rate. While at first this may seem like an
incredible amount of added vulnerability, when taking as a percentage of the size of the

encryption rate the increase is actually extremely small.



Figure 9

Figure 9 shows that when the rate of encryption is doubled so is the exponent for
additional exposure. Taking in to account the both the rate of encryption and size of the
additional exposure are exponents in the equation 2%, the actual expansion of the
boundary decreases when taken as a percentage of the encryption rate. In comparing the
three graphs (including the 256-bit encryption test not shown) I found that the exponent
used to test the boundary approximately doubled each time and as you can see above the
rate of decline in the percentage of correct exposures declines at the same rate for all
three encryption rates. These findings suggest that while Boneh's boundary may not be
exactly right it is fairly close, and furthermore there is indeed a function that maps the
size of the modulus to size of an insecure private key.

Prevent ng RSA Attacks



delay into the calculation of the decryption. This method my seem to be ideal because it
does not result in any additional calculation, but it turns out that this only make the attack
harder to perform. The introduction of random timings is essentially the same as the
inconsistencies in computer timing, and theoretically can be averaged out by increasing
the number of samples used.

Kocher's paper suggests a clever prevention method commonly referred to as
blinding. This method calls for the calculation of an additional set of randomly generated
numbers <v;, v¢>.[2] For the RSA algorithm Kocher suggests that v; is chosen to be

relatively prime to the modulus n, and v;is computed by the following equation:
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With regard to the mathematical attacks I would like to work on expanding the
boundary of the continued fractions, small private exponent attack, as well as
implementing an attack on a low public exponent. To expand the boundary of the
continued fractions attack I would perform testing on the improved denominator as
suggested by Wiener. [8] Boneh suggested a number of attacks on a small public
exponents, all of which rely on the LLL lattice algorithm. After gaining a solid
understanding of the math behind this algorithm I would like to implement one of these
attacks. My ideal goal would be to see how far I could advance both the small private and
small public key vulnerabilities, in order to be able to suggest an optimal range for key

generation.
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