Real Analysis Qualifying Exam

Answer all four questions. In your proofs, you may use any major theorem, except the result you are trying to prove (or a variant of it). State clearly what theorems you use. All four questions are worth the same number of points. Good luck.

Notation: In the questions below, n denotes Lebesgue measure on \mathbb{R}^{n} .

Question 1. Let \mathbf{ff}_1 ; \mathbf{f}_2 ; ::: **g** be a sequence of continuous, positive functions de ned on the unit interval [0; 1] with

$$Z_{1} f_{n}(x) d^{1}(x) = 1$$

for all n. Assume that the pointwise limit of the sequence ff_ng exists, and denote it by f.

- a. Is it always true that $\frac{R_1}{0} f(x) d^{-1}(x)$ 1? Prove or provide a counterexample.
- b. Is it always true that $\frac{R_1}{0} f(x) d^{-1}(x)$ 1? Prove or provide a counterexample.

Question 2. For any ²-measurable function $f : R^2 ! R$, and for every x; y 2 R, de ne $f_x : R ! R$ and $f^y : R ! R$ by $f_x(p) = f(x; p)$ and $f^y(p) = f(p; y)$.

a. Given an example of such a function f such that f_x 2 L¹(R) for a.e. x and f^y 2 L¹(R) for a.e. y but

- b. What does Fubini's theorem assert about such f (f that satisfy (1))?
- c. What does Tonelli's theorem assert about such f (f that satisfy (1))?

Question 3. Prove that a normed vector space is a Banach space if and only if every absolutely convergent series is convergent. As part of your answer, state the de nitions of \Banach space," \absolutely convergent" and \convergent." **Question 4.** Denote by A the smallest algebra of subsets of R that contains all bounded intervals. Denote by A the collection of countable unions of sets in A. Denote by ¹ the outer measure on the power set P(R) induced by the premeasure on A that assigns to any bounded interval its Euclidean length, and to any unbounded interval 1.

- a. Let **E R**. What does **E** is ¹ -measurable'' (i.e. outer measurable) mean?
- b. How is the collection of ¹-measurable sets related to the collection of ¹-measurable sets?
- c. Prove that for any E R and any > 0, there exists A 2 A with E A and 1 (A) 1 (E) + .