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outcomes, but typically not in the way these procedures are perceived by the
agents to whom outcomes are allocated. The literature on allocation prob-
lems, and more generally on one-sided and two-sided matching (for a survey,
see Abdulkadiro�glu and S�onmez (2013)), typically maintains the assumption
that agents are only interested in the overall probability they will receive
their desired outcome. This assumption implies the equivalence of di�er-
ent randomized mechanisms (Abdulkadiro�glu and S�onmez (1998); see also
Pathak and Sethuraman (2011)). Nevertheless, we show that taking into ac-
count the procedures that generate this probability may be important, and
seemingly similar mechanisms like Random Top Cycle and Random Serial
Dictatorship can be ranked di�erently when preferences over compound lot-
teries are taken into consideration. Moreover, we use this insight to propose
a new mechanism which may be better than those currently discussed in the
literature.

The basic structure we investigate is simple: N units of two di�erent
types need to be allocated to N individuals, one per person. For example,
N dorms | some face west and the other face east | that need to be
allocated to incoming students. Some will prefer one type and some will
prefer the other. Since there are only two types, there is no room for strategic
manipulations and agents’ optimal strategy is to reveal their true preferences.
For tractability, in the formal analysis we will con�ne attention to the case
of a large population: a continuum of agents and units.

We �rst take an ex-ante approach, where agents are yet to learn their
own preferences (as well as those of the other agents) over the goods. These
preferences are revealed after the �rst part of the procedure takes place. In
professional sports, for example, teams typically know their rank in the draft
before they know which positions they would like to �ll. This will become
clearer by the time they know the draft prospects and the medical condition
of their current roster for next year. In a school context, prospective students
often attend visit days and open houses long after the assignment procedure
has been announced. Individuals in such situations thus view possible mech-
anisms as compound lotteries, that is, lotteries over the interim probabilities
of receiving their desired outcome. Crucially, our analysis is based on the
assumption that sequential probabilities are not taken by individuals to be
the same as their product. In other words, individuals do not obey the re-
duction of compound lotteries axiom, according to which an agent should be
indi�erent between any multi-stage lottery and the single-stage lottery that
induces the same probability distribution over �nal outcomes.
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Extensive experimental results suggest that individuals often fail to re-
duce compound lotteries to simple ones using probability laws (see, among
others, Halevy (2007), Abdellaoui, Klibano�, and Placido (2015), Harrison,



industries, for example, in the airline industry. While priority groups often
depend on some merit (e.g. the amount spent and miles 
own in the previous
calendar year), in the alternative we suggest the assignment to groups is
random.

Intuitively, the di�erent mechanisms we consider induce lotteries over in-
terim probabilities that can be ranked in terms of \riskiness." Following
Machina (1982), we approximate local behavior by expected utility function-
als, and the curvatures of these local utility functions determine the desir-
ability of a mechanism. For example, TC generates a less risky distribution
than SD, and thus is preferred if all local utilities are concave. We outline
conditions over these utilities that determine preferences over mechanisms
and show that these conditions can also be linked to attitudes towards the
timing of resolution of uncertainty (see section IV).

While our analysis is mainly focused on the ex-ante approach, it can
also be applied to the interim case, in which each individual learns his place
in the mechanism after he already knows his type. We demonstrate this
in Section VI. Here again, the absence of the reduction assumption allows
us to examine the performance of seemingly identical mechanisms, and to
show conditions under which TC or SD is superior to the other and con-
ditions where PG is preferred to both. More generally, it is important to
emphasize that our analysis is not restricted to any speci�c order. It ap-
plies whenever mechanisms involve some sequential resolution of uncertainty
(even with more than two stages) and individuals do not obey the reduction
of compound lotteries assumption.

The rest of the paper is as follows: Section II introduces the basic struc-
ture and the TC and SD mechanisms. Section III describes the preferences
we consider and compares TC to SD. Section IV discusses the PG mecha-
nism and provides conditions under which it is preferred to both TC and SD.
Section V extends our analysis beyond the class of preferences we studied in
the previous sections. Section VI considers the interim case. Section VII
concludes with some further discussion.

II Two Allocation Mechanisms

Consider the following continuum variant of the house allocation problem
(Hylland and Zeckhauser (1979)). There are goods of two types, g1 and g2
in proportion p : 1 � p, to exactly supply the total quantity needed to ac-
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commodate a [0; 1] continuum of agents. All agents have the same stochastic
preferences, where with probability q each prefers g1 to g2 (independently of
the preferences of others). We normalize payo�s so that the utility from the
desired outcome is 1 and the utility from the other outcome is 0. We analyze
below the case of excess supply of g1, that is, p > q. The analysis of the case
p < q is similar.

In this section we consider two familiar mechanisms, each consisting of
two stages.

� Random Top Cycle (TC): In the �rst stage, the goods are randomly
allocated among the agents, so that the probability of person i holding
good of type g1 or g2 is p or 1 � p, respectively. In the second stage,
the entire pro�le of preferences is revealed and trade, if needed, takes
place. Those who like their holding will keep it. The rest will trade
according to the following schedule: If m proportion of people holding
one type of good and ‘ < m proportion of people holding the other
type are unhappy with their holding, then the latter group will trade
and get their desired outcome, while ‘ out of the former group will be
selected at random and get their preferred option. The other m�‘ will
keep their undesired outcome.2

� Random Serial Dictatorship (SD): In the �rst stage the order of the
agents is randomly determined, so that the probability of each person
being in the top m part of the queue is m. In the second stage, the
entire pro�le of preferences is revealed. The agents then choose goods
according to the order determined in the �rst stage. Agents get their
desired outcome if, when their turn arrives, such a unit is still available.



and SD lead to the same overall probability of success, and are hence deemed
indi�erent if agents are only interested in the overall probability at which they
will receive their desired outcome (see Abdulkadiro�glu and S�onmez (1998)).

Suppose that the individual knows that he will face a binary lottery of the
form (x; �; y; 1� �) where x and y are �xed and x is preferred to y, but the
winning probability � is determined by a random device such that with prob-
ability �i the value of � is �i. We denote such lotteries as h�1; �1; : : : ; �n; �ni.
This is a two-stage lottery, where in the �rst stage, with probability �i the
winning probability of the second stage is determined to be �i. The second
stage is a simple lottery over the �nal outcomes x and y, where the former
is obtained with probability �i.

Consider �rst the TC mechanism. Since there is an excess supply of g1
(p > q), all those who receive g2 | their proportion is 1�p of the population
| know that they will end up with their desired outcome regardless of their
preferences. Either they will like it and keep it, or they will be able to trade.
The size of the group of those who will receive g2 but would like to replace



to satisfy their desires only if they prefer g1 to g2. The probability of having
these preferences is q. SD thus leads to the lottery over probabilities given
by X2 = h1; 1�p

1�q ; q;
p�q
1�q i. Here too the analysis is ex-ante, before individuals

know their position in the queue or their preferences (which will only be
revealed to them later). Observe that if p = q, then in a large economy both
TC and SD yield (almost) everyone his desired outcome for sure.

III Are TC and SD Equivalent?

The two lotteries over the probabilities of success we have previously dis-
cussed, X1 = h1; 1 � p; q

p
; pi and X2 = h1; 1�p

1�q ; q;
p�q
1�q i, have the same \ex-

pected value." That is, the expected probability of receiving the preferred
good is the same under both mechanisms, which is 1�p+ q. This is not sur-
prising. As p, the proportion of good g1, is greater than q, the proportional
demand for g1, it must be that eventually p�q agents will not be happy with
their outcome. Ex-ante, when agents do not yet know their preferences and
the outcome of the mechanism, the reduced probability of success for each
of them is therefore 1� p+ q. This, however, does not necessarily mean that
all mechanisms with this reduced probability are equally attractive.

Let x =\receive the desired outcome" and y =\receive the undesired
outcome." As x and y are �xed, the probability �i represents the lottery
(x; �i; y; 1 � �i). The decision maker has preferences � over compound lot-
teries of the form h�1; �1; : : : ; �n; �ni which can be represented by a func-
tional V . Following Kreps and Porteus (1978) and Segal (1990), we use the
recursive analysis of preferences over compound lotteries, where the decision
maker considers the two-stage lottery h�1; �1; : : : ; �n; �ni as a lottery over
his subjective values of the lotteries (x; �i; y; 1��i). In particular, we do not
assume the reduction of compound lotteries axiom, hence V is not ordinally
equivalent to

P
�i�i.

We analyze mechanisms as cumulative distribution functions over [0; 1],
where FX(��) is the probability that the mechanism X yields a simple lottery
(x; �; y; 1 � �) with �



them, where at least one of these improvements is strict. Ex-post e�ciency
implies that every individual who prefers the good for which there is excess
supply must obtain it, as otherwise there will be scope for an improving trade.
Therefore, any lottery in which some fraction of the population know for
sure that independent of their preferences they will not receive their desired
outcome (that is, any lottery over ex-ante probabilities in which �i = 0 is in
its support) will be ine�cient and will not be considered a valid mechanism.
On the other hand, both TC and SD are ex-post e�cient. It is enough to
show that there is no agent who holds the item for which there is excess
demand while he prefers the other good. By the construction of the TC
mechanism, any such individual will participate in the second stage trade.
In SD, such an individual will never choose this good when his turn arrives,
as his preferred good, which is in excess supply, will be still available.

Following Machina (1982), we assume �rst that the representation func-
tion V is smooth in the sense of being Fr�echet di�erentiable: For every F
there exists a continuous local utility function uF (�) over [0; 1] such that

V (G)� V (F ) =

Z 1

0

uF (�)d(G(�)G(



Risk aversion along a segment connecting two lotteries may be a rea-
sonable assumption when lotteries are over monetary payo�s, but such an
attitude is much less obvious in the present context. To illustrate, consider
lotteries of the form Y" = h1

2
� "; 1

2
; 1

2
+ "; 1

2
i. Obviously they are ordered by

mean-preserving spread, where for "0 > ", Y"0 is a mean preserving spread
of Y". However, there is no obvious reason to posit a speci�c ranking be-
tween Y0 and Y0:5. If time is not involved, it seems plausible to assume that
Y0 � Y0:5, as both represent a simple even chance of winning. If the passage
of real time is considered, then preferences between the two capture prefer-
ences over the timing of resolution of uncertainty, as Y0:5 is fully resolved in
the current period, whereas Y0 only resolves later. As we will further discuss
in Section IV, there is no empirically obvious pattern for such preferences.
We are thus interested also in situations where the local utilities are not al-
ways concave or always convex. We use this in the next section where we
o�er a new mechanism and show conditions under which this mechanism is
better than both TC and SD.

IV The Priority Groups Mechanism

In this section we o�er an alternative new mechanism, called Priority Groups
(PG), and provide conditions under which it is preferred to both TC and SD.
This mechanism �rst allocates the two goods as in the TC mechanism, and



those who will be assigned to the top priority group will obtain their desired
outcome even if they received g1. The size of this set is pr1. As the allocation



Let

A(r1) = q +
(1� p)q � p(1� q)r1

p(1� r1)
Eq. (3) becomes

X3(r1) = h1; 1� p+ pr1; A(r1); p(1� r1)i(5)

Observe that if r1 = 0, then X3(r1) reduces to X1 = h1; 1 � p; q
p
; pi, the

lottery obtained by the TC mechanism. On the other hand, if r1 = q(1�p)
p(1�q) ,

then by eq. (4) s2 = 0 and X3(r1) reduces to X2 = h1; 1�p
1�q ; q;

p�q
1�q i, the lottery

obtained by the SD mechanism.
We now show that under some simple conditions, neither TC nor SD are

optimal. We will do this by showing that moving from either in the direction
of the PG mechanism will make individuals better o� ex-ante.

Denote by ur1 be the local utility u
X3(r1)

of V at X3(r1).

Proposition 2 If u0 is convex on [ q
p
; 1] and u q(1�p)

p(1�q)

is concave on [q; 1], then

neither TC nor SD is optimal.

Proof: By Machina’s (1982) analysis

@

@r1
V (X3(r1)) =

@

@r1
E[ur1(X3(r1)]

= pur1(1)� p� q
1� r1

u0r1
(A(r1))� pur1(A(r1))

As A(0) = q
p
, we get

@

@r1
V (X3(r1))

����
r1=0

= pu0(1)�((



For the second part, denote r�1 = q(1�p)
p(1�q) . As A(r�1) = q, we get

@

@r1
V (X3(r1))

����
r1=r�1

= pur�1 (1)� p(1� q)u0r�1 (q)� pur�1 (q)



example, quadratic utility (Chew, Epstein, and Segal (1991)) and weighted
expected utility (Chew (1983))), there are many popular models that are not.
A prominent example is rank-dependent utility (Quiggin (1982)).4 Our aim
is to show that the possible improvement of the PG mechanism over both TC
and SD holds more generally. We demonstrate this by providing su�cient
conditions on a version of the rank-dependent utility functional known as the
dual theory (Yaari (1987)).5

Since 1 > A(r1), the rank-dependent value of X3(r1) (see eq. (5)) is

VRD(X3(r1)) = u(A(r1))g(p(1� r1)) + u(1)[1� g(p(1� r1))]

By the de�nition of A(r1) we get

@

@r1
VRD(X3(r1)) =

@

@r1
[u(A(r1))g(p(1� r1)) + u(1)[1� g(p(1� r1))]] =

�
�

p�q
p(1�r1)2

�
u0(A(r1))g(p(1� r1))

�pu(A(r1))g
0(p(1� r1)) + pu(1)g0(p(1� r1))

(6)

Recall that r1 = 0 represents the TC case. We get

@

@r1
VRD(X3(r1))

����
r1=0

= �p� q
p

u0
�
q

p

�
g(p)� pg0(p)

�
u

�
q

p

�
� u(1)

�
For example, for u(�) = � this equation becomes

�p� q
p

g(p)� p
�
q � p
p

�
g0(p)

which is positive if and only if

(�) �g(p) > 1

4Other examples include Gul (1991) and Cerreia-Vioglio, Dillenberger, and Ortoleva
(2015).

5If we order the prizes in the support of a lottery h�1; �1; : : : ;�n; �ni, with �1 > �2 >
: : : > �n, then the functional form for rank-dependent utility is: V (h�1; �1; : : : ;�n; �ni) =

u(�n)g(�n) +
Pn�1

i=1 u(�i)[g(
Pn

j=i �j) � g(
Pn

j=i+1 �j)], where g : [0; 1] ! [0; 1] is strictly
increasing and onto, and u : [0; 1]! R



The SD case is obtained when r1 = q(1�p)
p(1�q) . Now

@

@r1
VRD(X3(r1))

����
r1=

q(1�p)
p(1�q)

=

�p(1� q)
2

p� q
u0(q) g

�
p� q
1� q

�
� pg0

�
p� q
1� q

�
[u (q)� u(1)]

which is negative if and only if

u0(q)(1� q)
1� u(q)

> �g

�
p� q
1� q

�
For u(�) = � this condition becomes

(��) 1 > �g

�
p� q
1� q

�
It is common to assume that g is an inverse S-shaped function | concave

for small probabilities and convex for high probabilities.6 This property



If �g is strictly increasing, there is a unique r�1 with this property. Note
that this condition is consistent with (�) and (��) since p > p(1 � r) > p�q

1�q

(recall that r1 2
h
0; q(1�p)

p(1�q)

i
). Di�erentiate again to obtain

� p� q
1� r1

�
2g(p(1� r1))
p(1� r1)2

� 2g0(p(1� r1))
1� r1

+ g00(p(1� r1))
�

(8)

Using eq. (7), the sign of expression (8) is the same as the sign of �g00(p(1�
r�1)). It is thus negative if g00(p(1 � r�1)) > 0, in which case r�1 is indeed
optimal.

VI Known Preferences

In previous sections we studied the ex-ante case, where the �rst part of the
mechanism is implemented before individuals know their own preferences. A
similar method can be used to study the case where individuals know their
preferences from the beginning. Here we demonstrate how our analysis can
be easily applied to this case as well. As before, we con�ne attention to the
case of large (continuum) economies and assume, without loss of generality,
that there is an excess supply of g1, that is, p > q. In the TC mechanism we
can therefore identify four groups:

1. qp will get g1 and like it.

2. (1� q)p will get g1 and will prefer to trade it for g2.

3. q(1� p) will get g2 and will prefer to trade it for g1.

4. (1� q)(1� p) will get g2 and like it.

Since p > q, the third group is smaller than the second one, and therefore
all members of the third group will be able to trade. In other words, all
those who prefer g1 (the �rst and the third group) are guaranteed to receive
it. Those who prefer g2 face a lottery. With probability 1 � p they will
get their desired outcome, and with probability p they will get their desired
outcome if they will be able to trade, the probability of this event is q(1�p)

(1�q)p .



where (1� q)� = 1� p, that is, if his rank is less than 1�p
1�q . The underlying

conditional lottery is thus W2 = h1; 1�p
1�q ; 0; p�q

1�q i. Note that here, after the
�rst step of the mechanism, all participants know for sure whether they will





away from any strategic considerations by con�ning attention to a setting in
which there are only two types of goods, and use individual preferences over
mechanisms to compare them. We thus concentrate on the decision-theoretic
dimension of the mechanisms without having to worry about individuals’ ma-
nipulations of their preferences over the outcomes.

Random allocation mechanisms typically involve multi-stage lotteries.
Based on a compelling evidence that people do not routinely use the laws
of probability to reduce multi-stage lotteries, we postulate that individuals
perceive mechanisms as compound lotteries and have recursive preferences
over them. Simple and familiar conditions then allow us to compare mecha-
nisms that are deemed identical in standard models. Moreover, our approach
permits us to o�er a new mechanism that under some conditions outperforms
standard mechanisms.

In this paper we show that it is enough to have n = 2 priority groups
to (sometimes) improve upon both TC and SD. In the special case of rank-
dependent utility we also outline conditions for an optimal PG mechanism
with two groups. We do leave open, however, the question of what is the
optimal number of groups (together with the probability of trade assigned
to each of them). This question crucially depends on the individuals’ prefer-
ences.

There are some considerations about the actual implementation of the PG
mechanism which we do not explicitly address in the paper. First, it is often
the case that having more groups entails higher bureaucratic costs that may
o�set the bene�t of having �ner division of the population. Therefore, even
if it is theoretically bene�cial to have more priority groups, a cost-bene�t
analysis may dictate a smaller number of such groups.

Implementation of the extreme cases of TC and SD requires no knowledge
of individual preferences or even aggregate preferences. The goods are allo-
cated at random (TC) and individuals are ordered at random (SD) regardless
of preferences. In order to determine which is better, however, society needs
to have information about the value of q and about individual preferences
over lotteries.

The allocation of the goods in the PG mechanism does not require knowl-
edge about q, but the determination of the sizes of the groups and their prob-
abilities of trade needs to satisfy eq. (2) which requires q.7 Moreover, as is

7For the analysis in Section V, knowing q is needed only to the extent that it determines
the possible range of r1, the size of the group that is guaranteed the option to trade.
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demonstrated in Section V, the optimal division into priority groups requires
knowledge about individual preferences.
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