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Abstract

In this paper, we consider a prize-sharing rule design problem in a group contest with

e�ort complementarities within groups by employing a CES e�ort aggregator function.

We derive the conditions for a monopolization rule that dominates an egalitarian rule if

the objective of the rule design is to maximize the group's winning probability. We �nd

conditions under which the monopolization rule maximizes the group's winning probabil-

ity, while the egalitarian rule is strictly preferred by all members of the group. Without

e�ort complementarity, there cannot be such a conict of interest.
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We check this second. Under the egalitarian rule, sinceX i =
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Let �̂ � n
� � � 2r

�
i in relation to ni in (14). We process the same procedure as in the proof of

Lemma 2. Rewriting (14), we have

r
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By totally di�erentiating the above expression and conducting the same operations as the proof

of Lemma 2, we obtain
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