


1 Introduction

A popular hypothesis in macroeconomics and �nance is that economic agents have

foresight: they receive information about the future of a random process that is not

revealed by its own past history. For example, the large and growing macroeconomic

literature on \news," starting with Cochrane (1994) and Beaudry and Portier (2006),

explicitly analyzes this hypothesis. In addition, but perhaps less obviously, many

papers introduce foresight implicitly, by representing a structural driving process as

the sum of several independent \components," each of which is separately observed

by agents. A classic example is the Friedman and Kuznets (1945) type representation

of income in terms of persistent and transitory components.

The �rst goal of this paper is to provide a measure of the quantity of foresight in an

information structure. We suggest measuring foresight by the information-theoretic



achieve this. We model these limitations as a constraint on the total quantity of

foresight the agent can receive, but allow him to otherwise choose his information

structure optimally.

By way of results, we provide three propositions, each addressing one of the ob-

jectives described above. The �rst presents a closed-form expression for the quantity

of foresight in a popular persistent-transitory representation of a random process in

terms of the underlying parameters. The second presents the type of foresight implied

by this representation in the form of a noise-ridden signal of the future values of the

process. The third presents a closed-form solution to the optimal foresight problem

in a prototypical dynamic optimizing model of consumption and saving. All of these

results can be generalized for use in other settings, which is ongoing work.

Related literature

Our approach to constrained information choice is related to the approach used in

the rational inattention literature initiated by Sims (1998), but it is distinct in several

respects.1 First, this literature and the subsequent literature on endogenous informa-

tion choice imposes a \no foresight constraint," which prevents agents from having

any foresight about the structural disturbances in the model. This constraint was

�rst introduced by Sims (2003), who suggested that it would be unrealistic to allow

agents to condition their information on future disturbances.2 By contrast, we allow

agents to have foresight regarding structural disturbances. Second, this literature

assumes that it is costly to process information about past and present structural

disturbances. By contrast, in this paper we assume that agents can costlessly process

information about current and past disturbances, and only face costs in processing

information about future disturbances.

One way to partially circumvent the no foresight constraint in the rational

inattention literature has been to introduce foresight implicitly, using independent-

component representations. This approach allows agents to have some foresight

regarding the sum of the components, even if they have no foresight regarding each

component separately. Examples of this type of implicit foresight in the rational

inattention literature include Luo (2008) and the related models in Section 6 of Sims

1See Veldkamp (2011) for a broad introduction to theories of endogenous information choice and

Ma�ckowiak et al. (2018a) for a recent survey of the rational inattention literature.
2Cf. Sims 2003, p. 672 where he describes the \more realistic situation."
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(2003) and Section 5 of Miao et al. (2020), which allow consumers to inform them-

selves about di�erent independent components of their income process. In all these

cases, however, the type of foresight is still constrained by the exogenously speci�ed

independent-component representation of the fundamental process. In this paper,

we allow that representation to be determined endogenously by agents’ optimal

information choice.

There are three papers in the rational inattention literature that are more explicit

about introducing foresight. The �rst is Gaballo (2016), who presents an overlapping

generations equilibrium model in which agents receive a noise-ridden private signal

about next period’s average price level. The main di�erence is that information is

not endogenously chosen by agents in that model; the signal structure is determined

exogenously. However, in Appendix (B), we use the theory of foresight that we

develop here to formally prove that the exogenous signal structure also happens to be

optimal. This result provides an information-theoretic justi�cation for the particular

signal structure chosen in that paper.

The second paper is Ma�ckowiak et al. (2018b). In Section 7 of the paper, they

formulate a business-cycle model with rational inattention and news. In this model,

technological disturbances are assumed to a�ect the level of technology with a delay

of



2 De�ning foresight

This section de�nes what we mean by foresight and also provides a measure of the

quantity of foresight that an information structure contains.

Foresight refers to information about the future history of a process beyond what



It is also worth noting that foresight is a directed measure of information 
ow.

To understand this, suppose that It is generated by the current and past values of

the stationary process fxtg. The fact that foresight is directed means that the roles

of fytg and fxtg cannot be reversed; i.e.

lim
T!1

I((yt+1; : : : ; yt+T ); xtjyt) 6= lim
T!1

I((xt+1; : : : ; xt+T ); ytjxt):

This is unlike the average rate of information 
ow between fxtg and fytg, which is

undirected (i.e. symmetric).

When all processes are Gaussian, as we will maintain throughout this paper,

conditional mutual information can be expressed in terms of the covariance matrices

of forecast errors with and without foresight

I((yt+1; : : : ; yt+T ); Itjyt) = �1

2
ln

det �̂T

det �T

; (1)

where �̂T is the covariance matrix with foresight, and �T is the covariance matrix

without foresight,

�̂T � var((yt+1; : : : ; yt+T )� E[(yt+1; : : : ; yt+T )jIt; yt])

�T � var((yt+1; : : : ; yt+T )� E[(yt+1; : : : ; yt+T )jyt]):

Using information-theoretic measures like conditional mutual information to quan-

tify information transmission is familiar from the economic literature on rational inat-

tention. In that literature, agents choose their information structures (i.e. what they

pay attention to) subject to a constraint on the rate of information 
ow. As we discuss

in the introduction, one important di�erence with respect to what we do is that in

rational inattention models, agents are not allowed to choose information structures

that contain any amount of foresight about the underlying structural disturbances.

If we call these disturbances f"tg, then this requirement can be expressed as

lim
T!1

I(("t+1; : : : ; "t+T ); Itj"t) = 0 (2)

for all possible information structures fItg.4

4See Jurado (2020) for discussion of the relationship between this way of articulating the no fore-

sight constraint and the way it is more commonly articulated in the rational inattention literature.
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3 Computing foresight

A common way to introduce foresight into economic models is by representing a

random process as the sum independent components, each of which is separately

observed by an economic agent. Perhaps the most popular of such representations is

the persistent-transitory representation. This section derives closed-form expressions

for the quantity of foresight in this representation. Because it may not always be

feasible to obtain closed-form expressions for the amount of foresight in an information

structure, we also present an algorithm that can be used across a wide variety of

information structures in Appendix (C).

Let fytg denote a stationary process; for the sake of concreteness we refer to it as

income. The persistent-transitory representation decomposes income into the sum of

two independent components,

yt = zt + �uut zt = �zt�1 + ���t; (3)

where �u; �� > 0, 0 < � < 1, and futg and f�tg are independent orthonormal Gaussian

white noise processes. The persistent component is zt and the transitory component

is �uut. At each point in time, the agent’s information set is equal to the closed linear

space spanned by the current and past history of disturbances, It = span(�t; ut).

To compute the quantity of foresight regarding the income process that is con-

tained in the information structure fItg, we can use equation (1). First, note that

the j-step-ahead forecast error in income according to the persistent-transitory rep-

resentation (3) is

êt+jjt = yt+j � E[yt+jjIt] = �uut+j +

jX
k=1

�j�k���t+k:

Stacking these up for j = 1; : : : ; T ,266666664

êt+1jt

êt+2jt

êt+3jt
...

êt+T jt

377777775
= �uIT|{z}

Qu

266666664

ut+1

ut+2

ut+3

...

ut+T

377777775
+

266666664

�� 0 0 � � � 0

��� �� 0 � � � 0

�2�� ��� �� � � � 0
...

...
...

. . .
...

�T�1�� �T�2�� �T�3�� � � � ��

377777775
| {z }

Q�

266666664

�t+1

�t+2

�t+3

...

�t+T

377777775
:
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From this we can see that �̂T = QuQ
0
u + Q�Q

0
�



since �T = Q"Q
0
", and Q" is lower triangular, so its determinant is the product of its

diagonal elements.

Now that we have computed the determinants of the forecast error covariance

matrices with and without foresight, we can use these expressions to compute the

conditional mutual information about (yt+1; : : : ; yt+T ). Plugging (4) and (6) into (1)

and using the fact that �2
" = �2

u�=�, we �nd that

I((yt+1; : : : ; yt+T ); (yt; zt)jyt) = �1

2
ln
�
(1� r2) + r2�2T

�
;

Since j�j< 1, we can see that the second term vanishes as T !1, which means that

we have arrived at the following result.

Proposition 1. The quantity of foresight in the information structure from the

persistent-transitory representation (3) is

lim
T!1

I((yt+1; : : : ; yt+T ); (�t; ut)jyt) = �1

2
ln(1� r2);

where 0 � r2 � 1 is given by

r2 �
�� �(1 + �2

�=�
2
u)

�(1� �2)

and 0 < � < 1 is given by

� � 1

2�

�
1 + �2 + �2

�=�
2
u �

q
(1 + �2 + �2

�=�
2
u)

2 � 4�2
�
:

Notice that the quantity of foresight in this representation depends only on � and

the ratio �2
�=�

2
u. The following corollary summarizes the way that foresight depends

on these parameters.

Corollary 1. Let F denote the quantity of foresight in the persistent-transitory rep-

resentation (3). Then

(i) F is monotonically increasing in � with limiting values lim�!0 F = 0 and

lim�!1 F = �1
2

ln(1� �r2), where

�r2 �
1� ��(1 + �2

�=�
2
u)

1� ��2

and
�� � 1

2

�
2 + �2

�=�
2
u �=�



0 0.5 1 1.5 2

Figure 1: Quantity of foresight in the persistent-transitory representation. The circle

shows the amount of information at the baseline parameter values � = 0:9, �2
u = 0:01,

and �2
� = 0:003.

(ii) F has limiting values lim�2
�=�

2
u!0 F = 0 and lim�2

�=�
2
u!1 F = 0.



4 Explicit foresight

As in the example from the previous section, foresight is typically introduced into

economic models by representing a structural process (e.g. income, technology, div-

idends) as the sum of independent components, which are all separately observable

by agents in the model. A di�culty with this approach is that foresight is intro-

duced only implicitly ; each of the independent components a�ects both the law of

motion of the structural process and the type of foresight agents have. This makes it

di�cult to perform comparative statics exercises, such as altering informational as-

sumptions about the quantity of foresight, holding �xed physical assumptions about

the structural process. It also makes it di�cult to validate these assumptions inde-

pendently. This section describes how to disentangle these two sets of assumptions,

by representing foresight explicitly in terms of subjective signals about the structural

process.

To alter informational assumptions regarding foresight without changing the phys-

ical assumptions regarding the structural process, it is necessary to hold the Wold

representation of the structural process �xed. The most straightforward way to do

this is to construct an equivalent representation of the agent’s information structure

in which the Wold innovations of the structural process appear in the set of struc-

tural disturbances. To illustrate, consider the persistent-transitory representation (3).

First, write income in terms of its Wold innovations as in equation (5). This isolates

the physical assumptions that the persistent-transitory representation makes regard-

ing the income process. Second, construct a set of subjective signals that isolate the

type of foresight agents have regarding the income process. In this case, it is possible

to show that span(�t; ut) = span(yt; st), where8

st = (1� �)
1X
j=0

�jyt+j + �vvt; (7)

�v = (1��)�"�u=�t



By separating representation (3) into a physical law of motion for income (5) and a

subjective signal (7), it becomes possible to analyze these physical and informational

assumptions separately. For example, to analyze the e�ect of increasing agents’ in-

formation about income far out into the future, we could replace the law of motion

for the signal fstg in (7) with a di�erent signal that places more weight on future

income,

~st = (1� ~�)
1X
j=0

~�jyt+j + �vvt;

with ~� > � (and �v is de�ned as before). The change in information from It =

span(yt; st) to ~It = span(yt; ~st) alters the quantity of foresight the agent has regarding

income, but does not alter the dynamics of income itself, which is held �xed at (5).

We summarize this discussion with a proposition. It is not di�cult to see that this

result can be extended to apply to representations other than the persistent-transitory

representation in (3). The general recipe is: (i) derive the Wold representation of the

structural process using standard results from time series analysis, and (ii) create a

set of subjective signals that generates the same information structure by projecting

any other variables observed by agents onto the space spanned by all past, present,

and future values of the structural process.

Proposition 2. Consider the persistent-transitory representation (3), with informa-

tion structure fItg, It � span(�t; ut). Then It = span(yt; st) when

yt = �yt�1 + �"("t � �"t�1)

st = (1� �)
1X
j=0

�jyt+j + �vvt;

where f"tg and fvtg are independent orthonormal Gaussian white noise processes,

�" � �u
p
�=�, �v � (1� �)�"�u=��, and � is de�ned as in Proposition (1).

This proposition reveals that in the persistent-transitory representation (3), it is

the implicit parameter � which controls the magnitude of the signal weights on future

values of fytg. From the expression in the Proposition, we can see that � depends

only on � and the ratio �2
�=�

2
u. We summarize its dependence on these parameters in

a corollary.

Corollary 2. The parameter � from Proposition (2) has the following properties.
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(i) � is monotonically increasing in � with limiting values lim�!0 � = 0 and

lim�!1 � = ��, where �� is de�ned as in Corollary (1).

(ii) � is monotonically decreasing in �2
�=�

2
u with limiting values lim�2

�=�
2
u!0 � = �

and lim�2
�=�

2
u!1 � = 0.

The intuition behind part (i) of the corollary is that as � increases, the persistent

component becomes more informative about income farther out into the future. This

corresponds to an increase in the weights of the signal st on future income. As �

approaches zero, income becomes white noise and the signal contains no information

about the future. The intuition behind part (ii) of the corollary is that the value of the

ratio �2
�=�

2
u determines how much of the variation in income is driven by the persistent

component relative to the transitory component. When it is arbitrarily small, income

becomes white noise; when it is arbitrarily large, income becomes an AR(1) process.

In either case, the implied signal st becomes completely uninformative. In the �rst

case, � is large but the signal is uninformative because it becomes in�nitely noisy,

�2
v=�

2
" = �2

u=�
2
� !1. In the second case, the signal is uninformative because it places

no weight on future income, � ! 0.

These results can be visualized in a numerical example. Using the same baseline

parameter values used to construct Figure (1), the expression in Proposition (1)

implies that � = 0:56. Figure (2) illustrates the e�ects of changing the parameters

on the magnitude of �. Each line shows what happens as the ratio �2
�=�

2
u varies

over the range of values on the horizontal axis. The di�erent lines show these e�ects

for di�erent values of �. From the �gure, we can see both how � is monotonically

increasing in � and monotonically decreasing in �2
�=�

2
u. We can also see how the point

at which each line crosses the vertical axis is equal to the corresponding value of �.



Figure 2: Value of the discounting parameter � implied by the persistent-transitory

representation. The circle shows the value of � at the baseline parameter values

� = 0:9, �2
u = 0:01, and �2

� = 0:003.

This section has two parts. The �rst derives a closed-form expression for the

agent’s forecasting rule with optimal foresight, and illustrates how foresight a�ects

the responses of endogenous variables to the structural disturbances. The second

compares the model’s predictions under optimal foresight with its predictions under

exogenous foresight, in the form of the persistent-transitory representation (3).

5.1 Consumption with endogenous foresight

In the model, a consumer seeks to maximize expected lifetime utility

E
1X
t=0

�tu(Ct);

where Ct is consumption, 0 < � < 1 is a subjective time discount factor, u is an

increasing, concave period utility function. Each period, consumption Ct and savings

Bt are subject to the dynamic budget constraint

Ct +Bt � (1 + rt�1)Bt�1 + Yt;

where Yt is (random) labor income and rt is the interest rate at which the consumer

can borrow at time t. The consumer is also prevented from engaging in Ponzi schemes

by the constraint limt!1
Qt�1

s=0(1 + rs)
�1Bt � 0:

The interest rate faced by the consumer is allowed to depend on his current level

of savings, rt = r + �(Bt), where r > 0 is a constant, and � is a strictly decreas-

ing function. This function represents a savings-elastic risk premium faced by the
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consumer; higher levels of savings (lower levels of debt) are associated with lower



average of current and future labor income,

xt � (1� �)
1X
j=0

�jyt+j; (9)

and the discounting parameter 0 < � < � is

� � 1

2

�
1 + � + ���2C �

p
(1 + � + ���2C)2 � 4�

�
:

Under this LQ formulation, certainty equivalence implies that the consumer’s

consumption and saving decisions can be decoupled from his choices regarding infor-

mation.10 Conditional on his information, the consumer’s policy function takes the

familiar permanent-income form11

ct =
1

C

�
(1� �)��1bt�1 + Y Et[xt]

�
: (10)

The term ��1bt�1 is the total �nancial wealth the consumer has available for con-

sumption at time t, and the second term is his optimal estimate of average current

and future labor income. Based on the expression for xt in (9), we can see that the

consumer endogenously discounts future income at rate �, which is less than �, due to

the fact that interest rates are savings-elastic. In the limit as �! 0, it is possible to

show that � ! �. The scaling terms C and Y appear because we are approximating

consumption and income in logs rather than levels.

The policy function (10) helps to clarify how the approach taken in this paper dif-

fers from the existing rational inattention literature. In that literature, the consumer

is both uncertain about his current savings bt�1 and the average of his current and

future labor income xt. Therefore, up to the same level of approximation, the policy

function of such an agent would depend only on his best estimates of both of these

variables,

ct =
1

C

�
(1� �)��1Et[bt�1] + Y Et[xt]

�
:

By contrast, we assume that the consumer perfectly knows his current and past

income, and therefore his current savings, so Et[bt�1] = bt�1. The relevant margin of

uncertainty for him is not the past or present, but the future. He remembers his past

10This well-known result is originally due to Simon (1956) and Theil (1957); see Whittle (1983)

for a somewhat more recent discussion.
11The intermediate steps are presented in Appendix (A).
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income and freely observes his current income and savings account balance, but �nds

it costly to obtain additional information about his future income.

What remains is to specify the consumer’s information choice problem. To do

so, we �rst show that it is possible to rewrite the consumer’s utility maximization

problem as a tracking problem in terms of the target variable



the constraint. Using this observation, we can re-write the consumer’s information

problem as:

min
fx̂tg

E
1X
t=0

�t(xt � x̂t)2 subject to (12)

(i) limT!1((yt+1; : : : ; yt+T ); x̂tjyt) � �

(ii) E[(xt � x̂t)x̂t�j] = 0 for all j � 0

(iii) E[(xt � x̂t)yt�j] = 0 for all j � 0,

where xt = (1 � �)(1 � �L�1)�1h(L)"t, with "t
iid� N(0; 1). The �rst constraint

is the foresight constraint, after imposing It = span(yt; x̂t). The second and third

constraints are rationality constraints necessary to ensure that the optimal forecast

equals the mathematical expectation of xt with respect to It; that is, they ensure

that x̂t = E[xtjyt; x̂t]. One restriction that these constraints impose is that the the

consumer can never \forget" any past information.

It is possible to obtain a closed-form solution to the consumer’s problem, which

we present in the following proposition.

Proposition 3. The forecast process fx̂g given by

x̂t =

�
(1� �)h(L)� e�2��L�1h(�)

1� �L�1

�
"t +

�p
e�2�(1� e�2�)(1� �) h(�)�

1� �L

�
vt;

with vt
iid� N(0; 1) and fvtg independent of f"tg, solves problem (12).

It is illustrative to consider how the forecast process in this proposition depends on

the parameter �, which controls the quantity of foresight available to the consumer.

As �! 0, the consumer’s forecast process converges to

x̂t = (1� �)h(L)� �L�1h(�)

1� �L�1
"t = E[xtjyt];

which is the optimal forecast of xt with no foresight, according to the well-known

formula of Hansen and Sargent (1980). On the other hand, as � ! 1, the forecast

process converges to

x̂t = (1� �) h(L)

1� �L�1
"t = xt;

17



which is the perfect foresight solution. For intermediate values of �, the optimal



to derive an equivalent \perfect information" representation, in which income is

expressed as the sum of independent components with time-t disturbances that the

consumer observes perfectly at each point in time.

Corollary 4. The optimal forecast process in (3) is consistent with the consumer

having a time-t information set It = span(�t; ut) with

yt =
p

1� e�2�

�
L� �
1� �L

�
h(L)�t + e��h(L)ut;

where futg and f�tg are independent orthonormal Gaussian white noise processes.

One way to interpret this result is to imagine that the consumer chooses among

arbitrary possible independent-component representations of income, subject to the

foresight constraint. Corollary (4) says that the consumer endogenously compresses

the information he receives into just two components, which optimally inform him

about his future income. Both components inherit the dynamics of income through

the term h(L). However, the �rst component has an additional dynamic term which

depends on the magnitude of the economic parameter �.

So far we have characterized the solution to the consumer’s foresight problem,

but we have not explored how his optimal information choice a�ects his consumption

and saving behavior. The simplest way to do this is through a numerical example.

We assume that income follows the ARMA(1,1) process from Proposition (2), with

the same parameter values we used to construct Figure (2) in Section (4). For the

economic parameters in the model, we set

� = 0:95; � = 0:5; and � = 0:01;

and consider a range of di�erent values for the informational parameter �.

Figure (3) shows the impulse response functions associated with each of the two

model disturbances, the income disturbance "t and the purely expectational distur-

bance vt from Proposition (3). The horizontal axis measures the number of time

periods since the disturbance has occurred, so negative values indicate periods before

the disturbance has taken place.

Focusing on the left column, which depicts responses to the fundamental income

disturbance, the top panel shows how the income disturbance a�ects income over

time. The disturbance has no e�ect on income before it occurs, it has its largest
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Figure 3: Impulse responses when � = 0:95, � = 0:5, � = 0:01, and income follows the

ARMA(1,1) process from Proposition (2) with � = 0:9, �2
u = 0:01, and �2

� = 0:003.

The last row refers to the consumer’s forecast of the target variable xt, de�ned in (9),

which is an exponential moving average of current and future income.
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e�ect on impact, and then it has a smaller e�ect in subsequent periods as it decays

at rate





�rst version, we use the same parameter values as in Section (3). We have seen that,

at these values, the quantity of foresight is 0.16 nats. Therefore, in the version with

optimal foresight, we set � = 0:16 to ensure that the total quantity of foresight in

both versions of the model is held constant.

Figure (5) shows the responses of income, consumption, savings, and expected

lifetime income to the income and expectational disturbances. The second panel in

the left column shows that consumption begins increasing earlier under optimal fore-

sight, and does not exhibit a rapid run-up in the period just before the disturbance

occurs. This result depends on the quantitative relationship between the parameters

� and �. Under optimal foresight, Corollary (3) indicates that the consumer e�ec-
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co
m

e
income disturbance

Figure 5: Impulse responses when � = 0:95, � = 0:5, � = 0:01, � = 0:1625, � = 0:9,

�2
� = 0:003, �2

u = 0:01 and h(L) = ��(1� �L)(1� �L)�1. The value of � is chosen to

keep the amount of foresight in both information structures the same. The last row

refers to the consumer’s forecast of the target variable xt, de�ned in (9), which is an

exponential moving average of current and future income.
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Figure 6: Misspeci�ed estimates of the autocorrelation function of income.

consumer makes choices under optimal foresight; however, an outside econometrician

attempts to �t a misspeci�ed model in which the consumer has sub-optimal foresight

of the type implied by the persistent-transitory representation. What we show is that,

holding �xed the economic parameters, the only way the econometrician can match

the additional persistence in the endogenous variables is by introducing additional

(counter-factual) persistence in income.

Speci�cally, the econometrician chooses values of the three parameters in the

persistent-transitory representation of income in the following way. First, he cali-

brates one to exactly match the variance of income. Then, he chooses the remaining

two parameters to match the autocorrelation function of consumption as closely as

possible. He does this by minimizing the distance between the empirical (true) and

model-implied autocorrelations of consumption at one and ten periods (other ways

of matching these autocorrelations have the same result). In this exercise, we assume

that the econometrician knows the true values of the other model parameters, and

that he observes autocovariances exactly. This second assumption is consistent with

the econometrician basing his estimates on large samples from the data generating

process.

Figure (6) plots the autocorrelation function of income estimated by the econo-

metrician for di�erent values of �. When � = 0, there is no foresight, and the

econometrician’s estimate exactly corresponds to the autocorrelation function of in-

come in the data generating process. However, as � increases, the econometrician

mistakenly attributes the additional persistence in consumption to additional persis-

tence in income. This highlights the danger of tying physical assumptions regarding

income too closely to informational assumptions regarding foresight. In this case, the
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persistent-transitory representation provides insu�cient degrees of freedom to cor-

rectly estimate these two independent sources of persistence. This is despite the fact

that the subjective signal in both the econometrician’s model and the data generating

process has exactly the same form: \average future income plus i.i.d. noise" (cf. the

signal in Proposition 2 and the signal in Corollary 3.)

6 Conclusion

Foresight is a common assumption in the literature on business cycles with technolog-

ical news, asset pricing with long-run risks, or consumption choice with persistent and

transitory components of income. In this paper we draw attention to this assumption

and provide ways of comparing information structures in terms of the type and quan-

tity of foresight they contain. A main result is Proposition (3), which generalizes the

Hansen-Sargent formula to the case when agents can endogenously choose the type

of foresight they have subject to an informational constraint.

The approach to endogenous foresight taken in this paper also suggests a number

of possible applications. One would be to combine endogenous foresight with the

typical assumption in the rational inattention literature that current and past ex-

ogenous variables are only imperfectly observed as well (although perhaps at a lower

informational cost). Such a combination has been performed by Jurado (2020), but

under the assumption that the cost of processing information about the past and the

future is the same. Introducing asymmetric (but nonzero) costs of processing infor-

mation about the past and future may be important for quantitatively reconciling the

tension between empirical evidence suggesting strong responses to anticipated distur-

bances (e.g. Kurmann and Sims, 2017) with other evidence of slow adjustment to

other economic developments (e.g. Carroll, 2003; Coibion and Gorodnichenko, 2015).

Other interesting applications require introducing endogenous foresight into a gen-

eral equilibrium environment. This would permit an analysis of the interaction be-

tween foresight and economic policy, such as \forward guidance" regarding monetary

policy. In such an environment, one advantage of shifting focus from endogenous

hindsight to endogenous foresight is that it would allow us to avoid many of the con-

ceptual challenges associated with market clearing and the presence of endogenous

individual-level state variables faced by existing models of information choice. As a

preliminary result in this direction, Appendix (B) illustrates how to apply our the-
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ory of foresight to the overlapping-generations equilibrium model of Gaballo (2016).

The model simpli�es many dimensions of the equilibrium analysis, a full treatment

of which will require further work.
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Online Appendix to:

Optimal Foresight

Ryan Chahrour Kyle Jurado

Boston College Duke University

A Proofs

Proof of Proposition (1). Relative to the discussion in the text, what remains is

to prove the expression for det �̂T given in (4), and then to show that 0 � r2 � 1.

Regarding the �rst of these, notice that

det �̂T = det(IT + C 0�(CuC
0
u)
�1C�) det(CuC

0
u) (matrix determinant lemma)

= det

�
IT +

1

�2
u

C�C
0
�

�
�2T
u (CuC

0
u = �2

uIT )

= det
�
IT + aA�1

T

�
�2T
u (C�C

0
� = �2

�A
�1
T , with a and AT de�ned below)

= det (AT + aIT aI
u what r859 -7.892 Td [(u)-3859+(aI3uk)2p1 Tf -03 y3x8859 -7.892d52 Tf 6.605 1.793276/F36 TaI



The determinant of this matrix for arbitrary T � 1, can be computed from the

recurrence relation

dT = (1 + �2 + a)dT�1 � �2dT�2

with d0 = 1 and d1 = 1 + a (e.g. Gantmacher and Krein, 2002, p.67). The solution

to this recurrence relation is

dT = c1�
T
1 + c2�

T
2 ; (14)

where �1 and �2 are the two roots of the polynomial P(�) = �2 � (1 + �2 + a)�+ �2

and c1 and c2 are chosen to satisfy the initial conditions. Based on the de�nition of

� in Proposition (2), we can see that the two roots of P(�) must be

�1 =
�

�
and �2 = ��:

Using these together with the initial conditions to determine c1 and c2, we �nd

c1 = 1� r2 and c2 = r2; where r2 � �� �(1 + a)

�(1� �2)
:

Plugging the expressions for �1, �2, c1, and c2 into (14) and then plugging the ex-

pression for dT into (13), we arrive at the expression in (4).

To show that 0 � r2 � 1, �rst observe that � � 1 � (1 + a)=�. Multiplying both

sides by ��, we �nd ��2 � �(1 + a), which implies that r2 � 1. To show that r2 � 0,

we need to prove that

� � �(1 + a): (15)

By the de�nition of �, �=� is the smaller root of the polynomial P(z) = �2z2 � (1 +

�2 + a)z+ 1. Since P(0) = 1 > 0, P(1) = �a � 0, and P(z) > 0 as z !1, it follows

that the two roots of this polynomial satisfy 0 � z1 � 1 � z2. Now notice that

P
�

1

1 + a

�
= ��2 a

(1 + a)2
� 0;

so it must also be true that z1 = �=� � 1=(1 + a), which proves (15).

Proof of Corollary (1). De�ne the ratio a � �2
�=�

2
u so that

r2 =
�� �(1 + a)

�(1� �2)
:

Di�erentiating with respect to �,

@r2

@�
=

(1 + a)(� � ��0) + 2��0�(�� �(1 + a))

�2(1� �2)
;

2



where �0 � @�=@�



Proof of Proposition (2). According to the persistent-transitory representation in

(3), the autocovariance generating function of fytg is given by

gy(z) =
�2
�

j1� �zj2
+ �2

u =
�2
� + �2

uj1� �zj2

j1� �zj2
:

Factoring the numerator,

�2
� + �2

uj1� �zj2= �2
�



Substituting these two expressions into (17), we can write

zt =
�2
�

�2
u

�=�

(1� �L)(1� �L�1)
yt +

��
p
�=�

1� �L
vt;

where vt is orthonormal white noise. Lastly, de�ne the new signal

st � (1� �)�
2
u

�2
�

�

�
(1� �L)zt

=
1� �

1� �L�1
yt + (1� �)�

2
u

��

s
�

�
vt

= (1� �)
1X
j=0

�jyt+j + �vvt;

where the second lines substitutes in the previous expression for zt, and the third line

de�nes �2
v � (1 � �)2�2

"�
2
u=�

2
�. Because 0 < � < 1 and yt 2 (yt), the transformation

in the �rst line is such that span(yt; st) = span(yt; zt).

Proof of Corollary (2). De�ne the ratio a � �2
�=�

2
u so that

� =
1

2�

�
1 + �2 + a�

p
(1 + �2 + a)2 � 4�2

�
:

Di�erentiating with respect to �,

@�

@�
=

�(1� �2 + a)

�
p

(1 + �2 + a)2 � 4�2
� 0;

which proves that � is monotonically increasing in �. Regarding its limiting behavior

as � approaches one, we have

lim
�!1

� =
1

2

�
2 + a�

p
(2 + a)2 � 4

�
:

As � approaches zero, we can use L’Hopital’s rule,

lim
�!0

� = lim
�!0

�

 
1�

s
(1 + �2 + a)2

(1 + �2 + a)2 � 4�2

!
= 0:

This completes the proof of the �rst part of the Corollary. For the second part, we

can see from di�erentiating � with respect to a that

@�

@a
=

1

2�

 
1�

s
(1 + �2 + a)2

(1 + �2 + a)2 � 4�2

!
� 0;
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so � is monotonically decreasing in a. As a approaches zero, we have

lim
a!0

� =
1

2�

�
1 + �2 �

p
(1� �2)2

�
= �:

To �nd the limit as a approaches in�nity, it is easiest to notice that

1

�
=

1

2�

�
1 + �2 + a+

p
(1 + �2 + a)2 � 4�2

�
;

since the polynomial P(z) = �z2� (1 + �2 +a)z+ � has reciprocal roots. Because the

right side becomes in�nite as a does, it follows that � approaches zero.



We can then use this relation to eliminate the linear terms in (20), which delivers the

purely quadratic approximation

V0 = E0

1X
t=0

�t
�
u(C) +

1

2
u00(C)C2c2

t �
1

2
u0(C)��b2

t + u0(C)

�
Y yt +

1

2
Y y2

t

��
+O(�3)

Finally, to arrive at the objective stated in the lemma, we divide this expression by

�u00(C)C2 > 0 and then add terms which are independent of the consumer’s choices.

The reason for including these speci�c terms will become clear in the proof of Lemma

(2), but at this point it is su�cient to observe that they do not a�ect the consumer’s

rankings of alternative plans.

Derivation of (10). The optimality conditions associated with the LQ problem (1)

are given by

ct = Et[ct+1] + ���bt (21)

Cct + bt = ��1bt�1 + Y yt



Using this factorization, we can write (23) as

Et[(1� �1L)(1� �2L)bt+1] = Y Et[yt+1 � yt];

or as

qt = ��1
2 Et[qt+1]� ��1

2 Y Et[yt+1 � yt];

where qt � (1 � �1L)bt. Because j��1
2 j< 1, this can be solved forward and rewritten

in terms of bt to get

bt = �1bt�1 � ��1
2 Y

1X
j=0

��j2 Et[yt+j+1 � yt+j]: (25)

Now, notice that

1X
j=0

��j2 Et[yt+j+1 � yt+j] = �2

1X
j=1

��j2 yt+j � yt �
1X
j=1

��j2 yt+j

= ��2yt + (�2 � 1)
1X
j=0

��j2 yt+j:

Substituting this into (25), we get

bt = �1bt�1 + Y yt � (1� ��1
2 )Y

1X
j=0

��j2 Et[yt+j]: (26)

Substituting this solution for bt into (22) and solving for Cct, we obtain

Cct = (1� ��1
2 )��1bt�1 + (1� ��1

2 )Y
1X
j=0

��j2 Et[yt+j];

This is the consumption function from (10) when we de�ne � � 1=�2.

Proof of Lemma (2). We begin by �nding a closed-form expression for the continu-

ation utility V �t



To verify the expression in (27), let

u�t � �
1

2

�
c�2t +

���

C
b�2t +

�
� � �
� � �2

�
Y 2

C2

�
(1� �)y2

t � 2ytxt
��

denote the time-t utility 
ow under perfect foresight, where

b�t =
�

�
bt�1 + Y yt � Y xt (29)

is the associated optimal savings plan. The continuation value V �t must satisfy the

recursion

V �t = u�t + �V �t+1:

By plugging the above expressions for u�t and V �t+1 into the right side of this equation,

repeatedly substituting in the policy functions (28) and (29), and using the fact that

xt+1 = ��1(xt � (1� �)VuTJ/F30 11.9552 Tf 3.5563552 0 Td [(x)]TJ/F62 7.9701 Tf 6.6528778 0 Td [(+1)]TJ/F33 11.9552 Tf 8.053 2.955 Td [(�)-278(�)]TJ/F27 11.9552 Tf 23.3.88 198.572[(1)]TJ
ET
q
1 0 0 1 186.345 659.531 cm
[]0 d 0 J 0.478 w 0 0 m3.88 18 0 -28 [(�)]TJ/F27 11.9552 Tf7.07.2271.771 584Edy

�



Expanding the right side of this equation, we �nd that the equation is satis�ed if and

only if ! = 1=�. Therefore, by (30),

E[V0] = E[V �0 ]� 1

�
E[D0]

Finally, since E[V �0 ] is independent of the consumer’s choices, maximization of E[V



Therefore, E[(xt� x̂t)2] = (1� �)2h(�)2E[(zt� ẑt)2]: To verify that the law of motion

for zt in Lemma (3) is consistent with (32), we can use the formula of Hansen and

Sargent (1980) to compute

E[xtjyt] = (1� �)h(L)� �L�1h(�)

1� �L�1
"t; (33)

and then substitute this expression and the de�nition of xt into (32). We can also

take conditional expectations on both sides of (32) with respect to It and rearrange

to �nd the implied relationship between x̂t and ẑt stated in the lemma,

x̂t = E[xtjyt] + (1� �)h(�)ẑt:



Proof. Observe that

� = lim
T!1

I(("t+1; : : : ; "t+T ); ẑtj"t) (foresight constraint)

= lim
T!1

I((zt; : : : ; zt+T ); ẑtj"t) (since "t+1 = zt=� � zt+1)

� I(zt; ẑ
tj"t) (property of conditional information)

=
1

2
lnE[(zt � E[ztj"t])2]� 1

2
lnE[(zt � ẑt)2] (Gaussianity)

=
1

2
ln

�
�2

1� �2

�
� 1

2
E[(zt � ẑt)2]: (de�nition of zt)

By rearranging this inequality, we obtain the lower bound stated in the lemma. Under

the conjectured solution,

zt � ẑt = (1�  )
�L�1

1� �L�1
"t �

p
 (1�  )

�

1� �L
vt: (35)

Therefore

E[(zt � ẑt)2] = (1�  )2

�
�2

1� �2

�
+  (1�  )

�
�2

1� �2

�
=

�
�2

1� �2

�
e�2�;

so the conjectured solution attains the 552 Tf 6.r41 -32.611 Td [(so)].51 0 Td [(�).51 0 7n1n327(552 Tf 6.r401 Td [(E)]TJ/F27 11.J/F7 1023)]TJ/F27 11.95523i(�)(TB30 1Tf 26ej0 Td [(�)]TJ/F30n0)]wT
/ Td [(�).51 0 7n95598 4063 11.9552 Tf 8.51 0 Td0



Proof. Using the law of motion for ẑt in (34), the autocovariance generating function

of f�tg is given by

g�(z) =

26664
 

�2



Stacking these up for j = 1; : : : ; T ,

266666664

�t+1jt

�t+2jt

�t+3jt



If we de�ne ~zt � ẑt � �ẑt�1, then (yt; ẑt) = (yt; ~zt), since this de�nition implies that

ẑt is a discounted sum of ~zt; ~zt�1; : : : . Now de�ne the signal

st �
(1��



De�ning �t � w1;t and ut � w2;t, and substituting  



v00H) > 0, the following Lemma presents a purely quadratic approximation to the

agent’s objective.

Lemma A.1. A purely quadratic LQ approximation to the nonlinear problem (37) is

one in which the agent seeks to maximize the quadratic objective

�1

2
Eit
�
h2
it � 2
 (pt+1 + �it � pt)hit

�
: (38)

Proof. Substituting the constraint into the objective to eliminate Cit+1, the agent’s

objective is EitUit, where

Uit � u
�
w + PtP

�1
t+1��1

it Hit

�
� v(Hit):

Next, note that steady-state optimality requires that u0(w+H) = v0(H). We can use

this optimality condition to eliminate the linear terms in the quadratic approximation

of the agent’s objective without following the more complicated steps in Benigno and

Woodford (2012), as we did in the proof of Lemma (1).

Speci�cally, a quadratic approximation to Uit is

Uit = U + (u0H � v0H)| {z }
=0

hit (39)

+
1

2

0@u00H2 � v00H2 + (u0H � v0H)| {z }
=0

1Ah2
it + (u0H + u00H) (pt � �it � pt+1)hit

+
1

2

�
u00H2 + u0H

�
(pt � �it � pt+1)2 +O(�3)

The quadratic term in the last line is independent of the agent’s policy variables.

Removing this term and dividing by �(u00H2 � v00H2) gives the desired result.

Lemma A.2. Maximizing the quadratic objective (38) is equivalent to minimizing

the loss function

E
�
(pt+1 � Eit[pt+1])



proof of Lemma (2). Substituting this optimality condition into the objective (38)

and simplifying, we get

�1

2
Eit
�
h2
it � 2
 (pt+1 + �it � pt)hit

�
= �1

2

2 (Eit[pt+1]� pt+1)2 + t.i.p.

where t.i.p. indicates terms that are independent of the agent’s policy variables. Re-

moving this term and dividing by �1
2

2 gives the desired result.

Consistent with the baseline analysis in Section III of Gaballo (2016), we take

�2
� !1, so that �it is not informative about the value of the aggregate state variable

�t. Given Lemma (A.2), the agent’s foresight problem can therefore be written as

min
Iit

E[(pt+1 � E[pt+1jIit])2] s.t lim
T!1

I((pt+1; : : : ; pt+T ); Iitjpt) � � (40)

The solution to this problem is presented in the following Lemma.

Lemma A.3. Let pt = h(L)wt denote the Wold representation of the equilibrium

price process, with wt
iid� N(0; 1). Then the forecast process

E[pt+1jIit] =
h(L)� e�2�h(0)

L
wt +

p
e�2�(1� e�2�)h(0)vit;

with vit
iid� N(0; 1) and fvitg independent of fwtg, solves problem (40).

Proof. First, we show that solving problem (40) is equivalent to solving

min
Iit

E[(wt+1 � E[wt+1jIit])2] s.t lim
T!1

I((wt+1; : : : ; wt+T ); Iitjwt) � �; (41)

where fwtg are the Wold innovations in fptg. The left side of the constraint is the

same, since span(pt) = span(wt) for all t by de�nition of fwtg. With respect to the

objective, note that

pt+1 � E[pt+1jIit] = (pt+1 � E[pt+1jpt])� (E[pt+1jIit]� E[pt+1jpt])

= (pt+1 � E[pt+1jpt])� E[(pt+1 � E[pt+1jpt])jIit];

since Iit � span(pt). Therefore, it is equivalent to treat pt+1�E[pt+1jpt] as the target

variable. Moreover, we can use the Wold representation of fptg to write

pt+1 � E[pt+1jpt] =
h(L)

L
wt �

h(L)� h(0)

L
wt = h(0)wt+1:

18



Diving by h(0) does not a�ect the optimal choice, which means it is also equivalent

to treat wt+1 as the target variable. This establishes that solving (40) is equivalent

to solving (41).

Second, we conjecture that

E[wt+1jIit] =  wt+1 +
p
 (1�  )vit � ẑit; (42)

where  � 1� e�2�. To verify this conjecture, we show that it attains a lower bound

on the objective function, and it is feasible. The lower bound on the objective function

is

E[(wt+1 � E[wt+1jIit)2] � e�2�:

This is because

� � lim
T!1

I((wt+1; : : : ; wt+T ); Iitjwt)

� I(wt+1; Iitjwt)

=
1

2
lnE[(wt+1 � E[wt+1jwt])2)� 1

2
lnE[(wt+1 � E[wt+1jIit)2]:

Using the fact that E[wt+1jwt] = 0 and rearranging delivers the stated lower bound.

Moreover, the conjecture in (42) attains this lower bound, since

E[(wt+1 � ẑit)2] = (1�  )2 +  (1�  ) = 1�  = e�2�:

To verify that the conjecture is feasible, notice �rst that under the conjecture, the

following two rationality restrictions are satis�ed:

E[(wt+1 � ẑit)wt�j] = 0 for all j � 0

E[(wt+1 � ẑit)ẑi;t�j] = 0 for all j � 0:

The �rst holds by de�nition of fwtg and because the innovations are independent of

fvitg





where fvitg is orthonormal white noise, independent of fptg, and

�2
v =

�
e�2�

1� e�2�

�
h(0)2:

Proof. We know from the proof of Lemma (A.3) that the optimal forecast of wt+1 is

E[wt+1jIit] =  wt+1 +
p
 (1�  )vit � ẑit;

and Iit = span(ẑti ; w
t). De�ne the private signal

sit =
1

 
h0ẑi;t +

1X
j=0

hj+1wt�j:

Rescaling ẑit and adding lags of the innovation process fwtg does not change the

information set, since span(wt) � Iit. Therefore, Iit = span(sti; w
t). But then, by

substituting in the known law of motion for ẑit, it follows that

sit =
h(L)

L
wt +

s
1�  
 

h(0)vit = pt+1 + �vvit;

where �v is de�ned as in the statement of the Lemma.

C Foresight in state-space models

This section presents a numerical algorithm that can be used to compute the quantity

of foresight for a general class of information structures. The algorithm computes the

quantity of foresight in an information structure fItg such that It = span(yt; xt),

where fytg and fxtg are ny and nx dimensional vector processes related by the state-

space structure

yt = Axt xt = Bxt�1 + Cet: (43)

The ne dimensional random vector et is i.i.d. over time with distribution N(0; Ine).

Separately computing the determinants of the matrices �T and �̂T and dividing

them, as we did in Section (3), can be numerically unstable. A preferable option is

make use of the fact that, with Gaussian random variables, information depends only

on the closed linear spaces spanned by each set of random variables; it is independent

of the choice of bases in those spaces. This implies that

lim
T!1

I((yt+1; : : : ; yt+T ); Itjy



where "t is the n" dimensional disturbance in the Wold representation of the process

fytg. By de�nition, it is i.i.d. over time with distribution N(0; In"), and its current

and past values at each point in time form an orthonormal basis for span(yt). The

equality in (44) says that the amount of information about the future values of the

process fytg is the same as the amount of information about the future values of the

disturbances f"tg.
The reason this is helpful is because, without foresight, the disturbance "t+j is,

by de�nition, completely unforecastable for any j > 0. Therefore, the covariance

matrix of forecast errors without foresight reduces to the identity matrix, which has

a determinant of one. Combining (1) and (44), we can express conditional mutual

information in terms of the determinant of one matrix,

I((yt+1; : : : ; yt+T ); Itjyt) = �1



Stacking these up for j = 1; : : : ; T ,266666664

�t+1jt

�t+2jt

�t+3jt
...

�t+T jt

377777775
=

266666664

~D 0 0 � � � 0

~A ~C ~D 0 � � � 0

~A ~B ~C ~A ~C ~D � � � 0
...

...
...

. . .
...

~A ~BT�2 ~C



function f = foresight(A,B,C)

% -------------------------------------------------------------------------

% Numerically compute the amount of foresight in the state-space model
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