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1 Introduction

In many social and economic environments, an individualís behavior or outcome depends

on both his own characteristics and on the behavior and characteristics of other individuals.



While often assumed in practice, the linear-in-means assumption is very unlikely to hold

in many applications like classrooms, where peer and contextual e¤ects are more likely to

operate through actual friendships with varying strengths, instead of equal ináuence from

all group members. We also show how to use our identiÖcation results to empirically test

the linear-in-means assumption. We reject this assumption in the STAR data.

1.1. The Model. Let yi 2 R and Xi 2 RK denote the outcome and exogenous covariates,

respectively, for an individual i. Each individual belongs to one of L groups, a.k.a. networks.

Assume there are nl individuals in each group l 2 f1; :::; Lg. Each group l has an unobserved

nl�nl adjacency matrix Gl, whose (i; j)-th component is either binary (equals 1 if i is linked

to j, and 0 otherwise), or is a generic number (a weight) indicating the strength of the link

between i and j.1

The researcher only observes yi and Xi for each individual i, and the identity of the

group that each individual i belongs to. The researcher does not observe the adjacency

matrices G1,...,GL. For example, suppose each group is an elementary school class, and each

Gl describes a network of friendships or study partners among the students in class l. The

researcher observes each student iís test score yi and the studentís vector of demographic and

other characteristics Xi. The researcher also observes which class (i.e., group) each student

is in, but does not observe who is friends with whom, or who studies with whom, within each

class. Instead of observing or modeling the adjacency matrices of each group (i.e., class), we

only assume that there is an unknown distribution of latent adjacency matrices, from which

each groupís matrix Gl is drawn.

We assume a standard linear social network model:2

yl = ��+ �Glyl +Xl� +GlXl + "l, (1)

where yl and "l are nl � 1 vectors of outcomes and errors, respectively, � an nl � 1 vector

of ones, and Xl an nl �K matrix of covariates. Assume for now that the errors "l are i.i.d.

and uncorrelated with Xl (these conditions can be relaxed). Our asymptotics are that the

number of members nl of each network l is Öxed, but the total number of networks L goes to



If the adjacency matrix Gl were observed for each group l in the sample, then point

identiÖcation and estimation of these parameters under general conditions would follow from

existing methods in the literature. For example, one could use the linear instrumental

variables estimator of Bramoullé, Djebbari and Fortin (2009), which uses data on friends of

friends, i.e., G2
lXl, as instruments for endogenous regressors Glyl.

1.2. Intuition for IdentiÖcation and Estimation. To explain the intuition for our

identiÖcation strategy, let us continue to use the example of students in a class. Begin by

making the simplifying assumption that all classes are the same size, having n students per

class (later, in Section 6.3, we describe multiple methods of generalizing our results to handle

variation in group sizes).

Equation (1) says that each element of yl (that is, each studentís test score) is a linear

function of the characteristics of that student, and of the test scores and characteristics of

that studentís friends. One could imagine trying to directly estimate these linear functions





simulations are in the appendix.

2 Literature Review

Standard estimators of social interactions models, like Lee (2007), Bramoullé, Djebbari





e¤ects  operate through the same adjacency matrix Gl. This assumption is standard in

the literature whenever both peer and contextual e¤ects are included in a model. See, e.g.,

Lee (2007), Bramoullé, Djebbari and Fortin (2009), and de Paula Rasul and Souza (2020).

One paper that relaxes this assumption is Blume , Brock, Durlauf and Jayaraman (2015).

This assumption is generally imposed because it would be di¢ cult to distinguish from data

the extent to which any observed link applies to peer e¤ects versus to contextual e¤ects.

We are not aware of any data sets where such information has been collected. However,

since our identiÖcation is intended precisely to cover situations where link data is not, or

cannot, be observed, it is possible that our methods could be extended to cover such models.

We discuss the possibility of extending our method to cover this case of multiple adjacency

matrices within each group in Appendix E.

We conclude this literature review by noting a deep connection between identiÖcation of

linear network models and identiÖcation of traditional structural systems of linear equations,

going back to the rank and order conditions described by Koopmans (1949) and the Cowles

foundation, and in more detail in Fisher (1966). First, consider the setting in de Paula,

Rasul and Souza (2020), which is equation (1), but simpliÖed by having Gl = G and nl = n



The linear-in-means model, which corresponds to a G having all o¤-diagonal elements

equal to 1=(n � 1)



draws from some unknown distribution of possible networks. As explained below, our method

requires these networks to be exogenous from the individual characteristics whose social

e¤ects are to be identiÖed.

By convention in the literature, the diagonal entries in each Gl are all zeros, i.e., Glii =

0 for i = 1; :::; nl. The o¤-diagonal entries Glij 2 R measure the strength of the link

between individuals i and j, with Glij = 0 signifying the absence of a link. The unobserved

adjacency matrices G1, ..., GL are assumed to be row-normalized. That is, given a group

adjacency matrix G�
l , the (i; j)-th component in the row-normalized version Gl is Glij =

G�
lij=
�Pnl

j0=1 G
�
lij0

�





Assumption 5 (Non-trivial e¤ects) (i) For each k < K, the 2-by-2 matrix 
�k �K
k K

!

has full rank. (ii) �K 6= cI for any c 2 R, where �K is a matrix of reduced-form coe¢ cients

for the K-th regressor as deÖned in equation (5).

Part (i) of Assumption 5 rules out the pathological case where some pair of regressors

have proportional contextual and peer e¤ects. As long as one regressor has contextual and

peer coe¢ cients that are not proportional to those of any other regressor, we can reorder the

columns of X to make that regressor be the K-th regressor to satisfy part (i). A su¢ cient

but not necessary condition for part (i) is K = 0 (one of the regressors has no contextual

e¤ect) while �K , �k, and k are all nonzero for all k < K. Part (ii) of Assumption 5 rules

out another pathological case, where the K-th regressor of each individual i has identical

marginal e¤ects on its own expected outcome, but no impact on that of any other group

member.

In addition to Assumptions 1 to 5, to obtain identiÖcation we will require some exclusion

restrictions, to satisfy a rank condition. These are discussed at length in Section 4.1.

4 IdentiÖcation

The Örst step of our identiÖcation strategy is to show how the reduced-form parameters

relate to the structural components of our model. As we show below, E
�
y j ~X

�
is linear in

~X. Hence the reduced-form parameters can be alternatively deÖned as the coe¢ cients of ~X

in this conditional expectation.

Lemma 1 Under Assumptions 1-4, the reduced-form parameters �0 and �k for 1 � k � K,

deÖned in (5), are identiÖed.

The proof of lemma 1 is in Appendix A, but the intuition is as follows. Let yi denote the

outcome for individual i. By construction,

E(yi j X) = �0 + eiE(M)X� + eiE(MG)X; (6)

where ei is a 1 � n unit-vector whose i-th component is 1. Observe that the right-hand

side of (6) is linear in all Kn components of X, so E
�
y j ~X

�
is linear in ~X. This equation

holds because G and M are independent from X by Assumption 3, and E(M" j X) =

12





size is moderately large.7 Otherwise, the researcher needs to take measures to estimate the

reduced-form coe¢ cients using limited data. For example, instead of requiring the sample size

be large relative to the number of regressors in OLS, de Paula et al. (2020) impose a sparsity

condition on the structural-form adjacency matrix, and then use a penalization approach to

estimate the reduced-form interaction matrix. In contrast, we propose alternative ways to



be a scalar multiple of I in order for (9) to hold for (~ak;~bk). Case 3: ~ak 6= ak, ~bk 6= bk. Then

(11) requires �k = � ~bk�bk

~ak�ak
�K , which is a scalar multiple of �K . Again, this implies that in

order for (9) to hold for (~ak;~bk), �K must be a scalar multiple of I. In each of these three

cases, the implication of (11) contradicts part (ii) of Assumption 5. �

The reduced-form coe¢ cients �0 and �k



For general cases with K > 3, the linear system in (14) is generalized to:0B@ 0(K�1)�1 H 0(K�1)�K

�(K�1)�1 0(K�1)�K H

m I I

1CA
| {z }

�

0B@ �

�



1CA
| {z }

�

=

0B@ �(K�1)�1

0(K�1)�1

m

1CA
| {z }

�

, (15)

with m � (m1;m2; :::;mK)0, I is a K �K identity matrix, and H is a (K � 1)-by-K matrix

constructed from (ak; bk)k=1;:::;K�1 as follows:

H � [diag(a1; :::; aK�1); (b1; b2; :::; bK�1)0].

The rank of the � matrix is generically 2K � 1. It cannot be greater than 2K � 1 by con-

struction, and is strictly less than 2K�1 only if the DGP generates one or more pathological

equality constraint coincidences among the ak, bk, and mk terms.

Next, we deÖne what we call an environment. An environment s is a subpopulation of

groups, deÖned by observable information, that satisÖes Assumptions 1 to 5. Each group

lies in one and only one environment. Let S denote the Önite number of environments in the

population. We allow all model parameters and group sizes to vary across environments, and

so all can be given an s superscript. Within each environment, the structural parameters

are Öxed. For example, environment can be deÖned by classroom size as in our empirical

study. Notice S = L is ruled out because S is Önite and L ! 1. To accommodate data

that has groups of di¤erent sizes, we can assume a di¤erent environment s for each possible

group size n(s) (additional ways to deal with varying group sizes are discussed later).

Because structural parameters �(s) � (�(s); �(s)0; (s)0)0 2 R2K+1 and the distribution of

(G;X; ") vary by environment in general, we index them with superscripts s, (G(s); X(s); "(s)),

to emphasize that they are allowed to be drawn from di¤erent distributions across di¤erent

environments. For example, for two groups l and k from the same environment s, their

adjacency matrices Gl and Gk di¤er but are drawn from the same distribution indexed

by s; in comparison, for two groups l and k0 from di¤erent environments s and s0, the

adjacency matrices Gl and Gk0 are drawn from two di¤erent distributions, indexed by s

and s0 respectively. Now identiÖcation of the model requires that we identify �(s) for each

environment s.

Suppose �(s) and the distribution of (G(s); X(s); "(s)) satisfy the restrictions in Assump-s, the61.609d[(S)11(u)11(p)11(p)-16(o)11(s)8(e)]TJ/F2-526; "(0



where � and d are column vectors that stack �(s) and � (s) respectively for s = 1; :::; S; and



where all o¤-diagonal elements of G(s) equal 1=(n(s) � 1). The reáection problem shows that

in this model, even if G(s) were known, the structural parameters would not be identiÖed

without additional restrictions. Since our model includes this linear-in-means model as a

special case, we must require at least as many additional restrictions for identiÖcation.9

There are two types of rank restrictions that are most natural to impose. The Örst type

are exclusion restrictions, which consist of assuming that some elements of either � or 

equal zero (like the exclusion restrictions commonly used to identify linear simultaneous

systems of equations). Graham and Hahn (2005) use such exclusion restrictions to identify

the linear-in-means model.10 To illustrate, suppose K = 3 and S = 1. In this case it su¢ ces

to assume that one regressor Xk has no contextual e¤ect (
(1)

k = 0) and a non-zero direct

e¤ect (�
(1)

k 6= 0), while another regressor Xk0 has no direct e¤ect (�
(1)

k0 = 0) and a non-zero

contextual e¤ect (
(1)

k0 6= 0). More generally, with K � 3, 	 has full rank generically if R

is deÖned by the exclusion restrictions that there exist k, k0 < K with k = 0, �k0 = 0

and �k 6= 0; k0 6= 0 . So essentially, we get identiÖcation if one regressor has no contextual

e¤ects and another has no direct e¤ects. In contrast, restricting two regressors to both have

no contextual e¤ects but nonzero individual e¤ects would not su¢ ce to make 	 full rank (this

turns out to be a case where the order condition would be satisÖed but the rank condition

is not).



still does not provide enough restrictions for identiÖcation (note that increasing S from 1

to 2 increased the number of required restrictions). However, if we impose one exclusion

restriction, such as assuming that one contextual e¤ect (i.e., one element of ) equals zero,

and we impose the constraint that �(1) 6= �(2), then that provides enough restrictions to

generically satisfy Theorem 1.

Note that the requirement that �(1) 6= �(2) can be tested in this case, since, by equation

(16), �(1) 6= �(2) if and only if m(1) 6= m(2).

The assumption that � and  do not vary by environment in this example can be relaxed.

For example, if the direct e¤ects � are the same across groups but the contextual e¤ects vary,

so (1) 6= (2), then the full rank condition required for identiÖcation will still hold generically

if one of the regressors has no contextual e¤ect in either environment, that is, if one element

in (1) and (2) equals zero.

For our empirical application in Section 7, we analyze studentsí math test scores. In

that application, we assume two environments corresponding to small (s = 1) and large

(s = 2) class sizes. For identiÖcation we allow � to vary by class size while Öxing � and .

This generalizes the models using class size variation to estimate constant peer e¤ects (e.g.,

Boozer and Cacciola (2001) and Graham (2008)). We then need one additional exclusion

restriction. For this we assume that a studentís number of days of absence from school has

an impact on his own test score but not on those of other classmates, so the element of 

corresponding to days of absence is set to zero. This exclusion restriction is motivated by the



further rank restrictions. The two approaches proposed in this section could precisely serve

this purpose. For example, if the model imposes no contextual e¤ects, i.e., k = 0 for

k = 1; 2; 3, we can uniquely solve for (�; �1; �2; �3) from the linear system (14) provided the

coe¢ cient matrix, after dropping the last three rows, has full rank (four). Alternatively, we

can accommodate contextual e¤ects but exploit the presence of multiple environments to

add rank restrictions by adopting the second approach proposed above. We note that these

additional required rank restrictions may in practice impose strong additional assumptions

on the model.

4.2 Individual labels

DeÖne the label of an individual in a group l to be the row of





5 Estimation

To estimate the structural parameters of our model, we use a sample of outcomes and re-

gressors over random networks (yl; Xl)l=1



where 	̂ is the coe¢ cient matrix formed by stacking (12) and (13) along with the exclusion

restrictions R� = c, as in Theorem 1.

For example, in the case with K = 3 above:

	̂ �

0BBBBBBBB@

0 â1 0 b̂1 0 0 0

1 0 0 0 â1 0 b̂1

0 0 â2 b̂2 0 0 0

1 0 0 0 0 â2 b̂2

m̂ I I

R

1CCCCCCCCA
; v̂ �

0BBBBBBBB@

1

0

1

0

m̂

c

1CCCCCCCCA
;

with R� = c representing equalities describing the exclusion restrictions, such as some of the

contextual and direct e¤ects being set to zero. Finally, the remaining structural parameter

� is estimated by b� = (1 � b�)b�0.

Now consider how this procedure can be generalized to handle multiple environments, so

S � 2. To do so, Örst implement steps 1 and 2 separately for each environment s, to get

estimates â(s)
k ; b̂

(s)
k ; m̂

(s)
k , s � S. Then, for step 3, stack the estimated matrices �̂ with R,

and the estimated vector d̂ with c as in the preceding subsection, to obtain 	̂ and v̂. Then

� is estimated by a classical minimum distance method:

�̂ � arg min
�2�

(	̂� � v̂)0��1(	̂� � v̂),

where



function in (17) depends on �̂
(s)
k smoothly. As L ! 1, this objective function converges in

probability, uniformly over the parameter space, to its limit where �̂(s)
k is replaced by �

(s)
k .

Lemma 2 implies this limit is uniquely minimized at the actual (a
(s)
k ; b

(s)
k ). By a standard

argument for the consistency of extremum estimators, (â
(s)
k ; b̂

(s)
k ) converges in probability to

(a
(s)
k ; b

(s)
k ) for each s and k. Note that 	 and v consist of known constants, a(s)

k , b(s)
k , and m(s)

k

for k � K and s � S. It then follows from the Slutsky Theorem that �̂ is consistent for �.

In Appendix A, we also explain why �̂ is
p
L-convergent and asymptotically normal.

Essentially, this result comes from the parametric convergence of OLS regression coe¢ cients,

and application of the delta method.

6 Extensions

6.1 Group-level variables and group Öxed e¤ects

The identiÖcation and estimation methods in Sections 4 and 5 can be readily extended to

accommodate group-level regressors. Suppose each group l has a row vector of group-level

characteristics zl 2 RP . For example these could be attributes of the teacher when each

group is an elementary school class.

For the moment, consider just a single environment, so S = 1 and the s superscript is

omitted. Including group level e¤ects the structural model becomes

yl = ��+ �Glyl + �zl� +Xl� +GlXl + "l,

with � 2 RP being a column vector of additional coe¢ cients. One could interpret � as a

source of ìcorrelated e¤ectsî. Let Assumption 1, 2 and 3 hold with Xl replaced by (Xl; zl),



Now if we have multiple environments, then run the above reduced form regressions

separately for each environment s as before, but now including zl as additional regressors.

We may then identify and estimate � from �
(s)
0 ;
�
�

(s)
k

�
k�K

for s � S and R� = c as before,

and estimate each �̂
(s)

using �̂
(s)

= �̂(s)(1 � �̂
(s)

).

Finally, this procedure can be further extended to accommodate unobserved group-level

Öxed e¤ects (denoted $l). Essentially, we can remove these Öxed e¤ects by applying group-

level demeaning of the outcomes to the reduced form, prior to recovering the structural

parameters. SpeciÖcally, the method consists of replacing the dependent variables y in the

Örst-stage reduced-form regressions with demeaned outcomes y � �y, and following the same

steps as before to estimate the structural parameters �. Then, we can recover the remaining

parameters � and � by plugging the estimates for � into the non-demeaned reduced form

in (18), and applying an exogeneity and location normalization assumption that E($l j
zl; Xl; Gl) = 0. Details of this procedure are provided in Appendix F.

6.2 Dimension reduction

Again, begin by considering the case of only one environment, so s superscripts can be

dropped. In the Örst-step regressions of



matrices �k for k � K. Then, given these �k matrices, one can proceed as before to estimate

the model.

With multiple environments (S > 1), the above regressions would be run separately

in each environment, before proceeding to the later steps of identiÖcation and estimation

as before. Either of the above dimension reduction methods may be especially useful in

applications with multiple environments, where the number of groups in some environments

s could be small relative to Kn(s). We adopt the second approach to estimate reduced form

coe¢ cients in our application.

6.3 Variation in group sizes

Our identiÖcation and estimation method assumes that all groups within each environ-

ment s have the same group size n(s). But with K individual characteristics in X, this

requires observing enough groups of size n(s) (meaning that L(s), the number of groups in

environment





7.1 Data description

We observe a cohort of students who were in kindergarten in 1985-1986. Seventy-nine

public schools were selected to participate in the project, representing various geographic lo-

cations (inner city, urban, suburban or rural). Students and teachers were randomly assigned

to classes with varying sizes of 13 to 25 students.16 Note that our estimator neither requires

nor directly exploits this random assignment; however, random assignment does make some

of our assumptions more plausible. An example is the dimension reduction discussed in

Section 6.2.

Our sample consists of 258 classes that had at least 15 but no more than 25 students each.

The total number of students in the sample is 5,189. We partition the classes in the sample

into S = 2 environments: smaller classes with 15-20 students, and larger classes with 21-25

students according to the original design of the project. In each class, we order the students

by their dates of birth, and use this ordering to label individual students. Table 7.1 reports

summary statistics of the studentsímath test scores in the second and third grade (t2 and t3)

and other individual-level or class-level variables to be used in our empirical analysis. These

include a studentís number of days of absence from school (



the literature, is that the students enrolled in smaller classes had already developed better

math skills than their peers in larger classes before the beginning of the third grade.

Table 7.1. Summary Statistics

Small class size (122 classes) Large class size (136 classes)

mean median std dev range mean median std dev range

t3 620.7 618.0 40.88 [487.0, 774.0] 616.6 616.0 40.15 [510.0, 774.0]

t2 0.077 0.287 0.936 [-5.902, 1.042] -0.029 0.287 1.023 [-6.355, 1.042]

abs 6.743 5.000 6.643 [0, 59] 6.902 5.000 6.429 [0, 55]

mot 49.29 50.00 3.990 [17, 59] 49.14 50.00 4.013 [18, 60]

tec 13.30 13.00 8.416 [0, 36] 14.19 14.00 9.079 [0, 38]

Notes: t3 : raw scores for 3rd grade math; t2 : standardized scores for 2rd grade math (using

overall mean and std dev across all classes); abs: days of absence; mot : self-reported moti-

vation score; tec: teacher experience (in # yrs).

Table 7.2. Test of Equal Means
(small vs. large classes)

p-value p-value

t3 0.001 abs 0.402

t2 < 0.001



7.2 Econometric speciÖcation

Our model, corresponding to equation (1), is

t3l;i = �(s) + �(s)
X

j
G

(s)
lij t3l;j + �1absl;i + �2motl;i + �3t2l;i + �(s)tecl

+2

X
j
G

(s)
lijmotl;j + 3

X
j
G

(s)
lij t2l;j + "l;i,

where i and j are indices (labels) for individual students, l is an index for class, and (s) is the

environment index. Each summation
P

j is over all students in the same class l as student

i. For each pair i and j, G(s)
lij is the row-normalized unobserved zero or nonzero link between

the members labeled i and j in class l, in environment s. The coe¢ cients to be estimated

are peer e¤ects �(s), direct e¤ects (�1; �2; �3), contextual e¤ects (2; 3), intercepts �(s), and

correlated e¤ects �(s) (this last is the marginal impact of teacher experience, a group-level

covariate).

The rank restrictions we have imposed for identiÖcation are as follows. First, this speci-

Öcation allows abs to have a direct e¤ect (�1 6= 0) but no contextual e¤ects (1 = 0). That

is, a studentís absence from school a¤ects his own test scores, but has no impact on his

classmates other than through peer e¤ects. This is an exclusion restriction. Other covariates

mot (self-reported motivation score) and t2 (Grade 2 math score) are not restricted, and so

can have both direct and contextual e¤ects. Our second rank restriction is that we assume

the individual e¤ects � and contextual e¤ects  are the same in the two environments, small

and large class sizes (which is why � and  do not have s superscripts above). All other

structural parameters, i.e., the intercept �(s), the peer e¤ect �(s), and the correlated e¤ect

�(s), are permitted to di¤er between small (s



7.3 Estimation results

Table 7.3 reports our structural coe¢ cient estimates. Standard errors are calculated

using B = 1000 bootstrap samples, each of which is constructed by drawing classes from the

original sample with replacement.

Estimates of peer e¤ects are statistically signiÖcant and positive in both small and large

classes, with the estimated coe¢ cient � being 0:85 and 0:92 respectively. A t-test for the

equality of peer e¤ects in small and large classes rejects the null of equality at the 1% level.

The magnitudes of our � estimates are comparable to earlier Öndings that used the same data

but very di¤erent methodologies. For example, using a linear-in-means speciÖcation (with

average class size of students in the previous year as an instrument) Boozer and Cacciola

(2001) estimate the peer e¤ects to be 0:86 for the second grade and 0:92 for the third

grade. DeÖning links to be a simple function of measured social distance and employing





Table 7.4: Tests for Over-identiÖcation
p-values

low disp. 0:569

high disp. 0:358

Table 7.5: Wald Test Statistics for Linear-in-Means (d.f.=29)
small class (p-val) large class (p-val)

low disp. 79.915 (<.001) 63.874 (<.001)

high disp. 45.112 (.028) 61.061 (<.001)

Table 7.6: CMD Test Statistics for Poisson Random Network (d.f.=3)
small class (p-val) large class (p-val)

low disp. 49.880 (<.001) 171.327 (<.001)

high disp. 36.954 (<.001) 101.636 (<.001)

Table 7.7: Di¤erences in Test Scores under the Linear-in-Means Network

Est. mean � p-val

small, low disp 6.054 0.105

large, low disp -9.596 0.060

small, high disp 5.810 0.184

large, high disp -6.405 0.239

Notes: Est. mean �: average di¤erence in class means of grade

three math scores in a network with equal weights on all friends.

Table 7.8: Impact of Counterfactual Peer E¤ects
Est. mean � p-val

small, low disp 16.198 0.003

large, low disp -11.637 0.001

small, high disp 2.954 0.620

large, high disp -5.301 0.187

Notes: Est. mean �: average di¤erence in class means of grade

three math scores when peer e¤ects in small and large classes

are swapped in a network with equal weights on all friends.

33



In the linear-in-means speciÖcation, for every group l in each environment s, the adjacency

matrixG(s)
l is constant (the same for all l) with all o¤-diagonal elements taking the exact same

value. With the s superscript dropped for simplicity, this implies that, for each individual

characteristic k,

�k � (I � �G)�1(�kI + kG) =
�
I + �

1��G
�

(�kI + kG).

This in turn means that all the o¤-diagonal components in �k must be identical. We calculate

Wald test statistics using a 6 � 6



a large number of simulated draws r) of the simulated model-implied marginal e¤ects (I �
�̂Gr (p))�1(�̂kI+ ̂kGr (p)). We deÖne the distance between these two matrices as a weighted

sum of the di¤erences in average diagonal and o¤-diagonal components, respectively. We

estimate p by minimizing Q̂(p). This objective function would asymptotically converge to





Appendix

A. Proofs

Proof of Lemma 1. The outcome of each individual i in group l is

yl;i = ~X 0
l�l;i + ~"l;i;

where ~"l;i � Ml;ri"l with Ml;ri being the i-th row in Ml, and �l;i is a (Kn + 1)-by-1 random

vector:

�l;i � [�0; (�1Ml;ri + 1Ml;riGl) ; :::; (�KMl;ri + KMl;riGl)]
0

with �k; k being the k-th components in �; . Recall that the joint distribution of (yl; Xl) is

directly identiÖed in the data-generating process (DGP) under Assumption 1. By construc-

tion, for each individual i,

E
�

~Xlyl;i

�
= E

�
~Xl

~X 0
l�l;i

�
+ E

�
~Xl~"l;i

�
= E

�
~Xl

~X 0
l

�
E (�l;i) ,

where the second equality holds because of the exogeneity of (G;X) in Assumption 2, and the

independence between G and X in Assumption 3. Under the non-singularity of E
�

~Xl
~X 0
l

�
in Assumption 4-(i), we can recover E(�l;i) from the joint distribution of (yl; Xl) as

E (�l;i) =
h
E
�

~Xl
~X 0
l

�i�1

E
�

~Xlyl;i

�
for each i = 1; 2; :::; n. Rearranging the components in E(�l;i), we identify �0 � �=(1 � �)

and �k � E[Ml(�kI + kGl)] for each k = 1; :::; K. �

Proof of Theorem 2. The estimators for reduced form coe¢ cients in Step 1 are OLS

estimators for slope coe¢ cients in a regression. Thus under Assumptions 1-3 and 4-(i),

�̂k
p!



in Step 2 converges in probably to its population counterpart uniformly over (ak; bk). That

is, for all k � K,

sup
ak;bk

���X
i;j

�
ei(ak�̂k + bk�̂K � I)e0

j

�2 �
X

i;j

�
ei(ak�k + bk�K � I)e0

j

�2��� p! 0:

By Lemma 2, the limit function
P

i;j

�
ei(ak�k + bk�K � I)e0

j





second step does not introduce additional sampling errors. A useful result for practitioners

is that the Örst-step estimation precision can be enhanced using the dimension-reduction

methods explained in 6.2. For example, in the current simulation example, the dimension-

reduction method replaces n = 10 regressions on n � K = 30 explanatory variables with

n � n = 100 regressions on K = 3 characteristics. This dimension-reduction helps obtain

the encouraging performance results reported in Tables B.1 and B.2.

C. Pooling groups with di¤erent sizes



and �k;ri(n) denotes the i-th row of the n � n matrix �k(n) and 0 a row vector of (�n � n)

zeros.

Let p(�) denote the probability mass for nl in the population. It then follows that for all

i = 1; :::; n,

E( ~Xlyl;i) = E( ~Xl
~X 0
l) [p(�n)�i(�n) + p(n)�i(n)]

) E[�i(nl)] =
h
E( ~Xl

~X 0
l)
i�1

E( ~Xlyl;i).

Thus E[�k(nl)], with nl integrated out as a random variable, are identiÖed and consistently

estimable for k = 1; 2; :::; K. Assuming �; �; ; � are the same for small and large classes, one

can then proceed and apply the method in Section 4 to estimate the structural parameters

of social e¤ects. We use this method to balance group sizes within the environments of small

or large classes in our application.

D. Dependent networks

In practice, the formation of links on a network may depend on individual characteristics

in the data. We now discuss how to generalize our estimator to deal with this dependence.

Begin by considering a single environment s, where all groups within the environment

have the same size n, and we omit the environment superscript. This procedure can be

applied separately for each environment in the data to obtain reduced form coe¢ cients,

which would then be combined to obtain the structural parameters as in Theorems 1 and

2. Partition individual characteristics into two parts Xl = (Xa
l ; X

e
l ). Let Xe

l denote an

n � Ke matrix of excluded characteristics, i.e., covariates that a¤ect outcomes but not link

formation; let Xa
l denote an n-by-Ka matrix that a¤ect individualsíoutcomes, link formation

decisions, or both. For example, in our empirical application, we let Xe
l be studentsídays

of absence from school and test scores from previous years. This assumes friendships are

independent of test scores conditional on observed demographics such as proximity of age.

If we observe all variables that jointly determine network formation and outcomes, then our

method can be applied after conditioning on Xa
l .

There is a large and growing literature on network formation. To just name a few,

Graham (2017), Hsieh, König, and Liu (2020), Hsieh, Lee, and Boucher (2020), Leung

(2015), Leung (2020), and Sheng (2020) explicitly model how the links are formed as an

equilibrium outcome. As stated in Graham (2019), ìUltimately, of course, the goal is to

study the formation of networks and their consequences jointly, but such an integrated

treatment remains largely aspirational at this stageî. Our focus in this paper is on peer

e¤ects with unobserved links, so we simply adopt the conditional independence to deal with

potential endogeneity in network formation.
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Suppose network formation is given by Gl = �(Xa
l ; ul), which does not involve Xe

l . The

reduced form is:

E(yljXl) =

Z hXK

k=1
Ml(�kI + kGl)Xl;ck +MlE("ljXl; Gl)

i
dF (GljXl), (19)

where Xl;ck denotes the k-th column in Xl as before. Assume (i) "l is independent of Xe
l

conditional on (Xa
l ; ul) and (ii) ul is independent of Xe

l conditional on Xa
l . These conditions

allow the unobserved errors "l and ul to be correlated conditional on Xa
l . Under these

assumptions, E(MljXl) and E(MlGljXl) is a function of Xa
l but not Xe

l , andZ
MlE("ljXl; Gl)dF (GljXl) =



Again we start with the case of a single environment where all groups have identical size

n, and we suppress the group subscript l throughout this section to simplify notation. Let G

and W be two possibly di¤erent n-by-n adjacency matrices. For each group, peer e¤ects and

contextual e¤ects operate through two di¤erent adjacency matrices G and W



has a unique solution  
ajk

bjk

!
=

 
�V;j �V;J
j J

!�1 
�X;k

0

!
. (23)

Proof of Lemma E.1. It is straightforward to check that (ajk; bjk) deÖned in (23) solves (22).

To see that this is a unique solution, suppose there exists (~ajk;~bjk) 6= (ajk; bjk) such that (22)

holds with (ajk; bjk) replaced by (~ajk;~bjk), and 
�V;j �V;J
j J

! 
~ajk � ajk
~bjk � bjk

!
=

 
�1

�2

!
6= 0,

where the inequality follows from the rank condition in (20). It then follows that

(~ajk � ajk)�j +
�

~bjk � bjk

�
�J = E (�1M + �2MW ) = 0. (24)

The last equality is ruled out by (21). �

Lemma E.1 provides an analog to Lemma (1). It may then be possible to combine

these equality constraints with rank restrictions like exclusions and multiple environments

to construct a corresponding extension of Theorem 1 to attain identiÖcation of this extended

model.

F. Group-level Öxed e¤ects

Our identiÖcation strategy can be extended to allow for group-level unobserved het-

erogeneity, i.e., group-level Öxed e¤ects. First, we note that if the group-level unobserved

heterogeneity is mean independent from the group and individual-level covariates in (z;X)

(corresponding to the usual assumption in random e¤ects models), then the estimation

method described in Section 6.1 can be directly applied, because in this case the conditional

mean of y given (z;X) is as speciÖed in equation (18).

Now, consider instead the more general Öxed e¤ects model. We now have the reduced-

form

y = M (X� +GX + ") +
�

1 � �
�+

z�

1 � �
�+

$

1 � �
�,

where � is still the intercept, z are observed group characteristics and $ is the unobserved

group heterogeneity (Öxed e¤ects). Let D = I �C, where C is an n-by-n matrix of identical

entries 1=n, so that Dy returns the within transformation of y. Then under the assumptions

that E("jX;G) = 0 and G?X, a within transformation leads to

Dy = DM(X� +GX + ") ) E(DyjX) = E(DM)X� + E(DMG)X.
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Thus we can write the reduced-form coe¢ cients for the k-th characteristic from a regression

using the within transformation as

~�k � E (�kDM + kDMG) = DE[M(�kI + kG)].

Assume the rank condition in Assumption 5-(i) holds and that

~�K 6= cD for any c 2 R. (25)

This condition can in principle be checked directly using the identiÖable ~�K . It can then be
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